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Chapter	1

Introduction



Abstract

Data	mapping	is	the	most	important	design	step	in	the	data	warehouse	lifecycle
and	impacts	project	success	or	failure.	The	process	links	the	design	and
implementation	phase	of	the	project.	The	outcome	of	the	process	is	the	data
mapping	document,	which	is	the	main	tool	for	communication	between	project
designers	and	developers.

Keywords

data	mapping;	source	matrix	(SMX);	transformation	design	document

Data	mapping	is	the	most	important	design	step	in	the	data	warehouse	lifecycle,
and	it	impacts	project	success	or	failure.	The	process	links	the	design	and
implementation	phases	of	the	project.	The	outcome	of	the	process	is	the	data
mapping	document,	which	is	the	main	tool	for	communication	between	project
designers	and	developers.

The	data	mapping	document	provides	detailed	steps	in	the	data	mapping	process
and	provides	a	guide	that	a	data	mapper	can	use	to	successfully	complete	his	or
her	task.	The	document	also	provides	data	mapping	scenarios	explaining
different	approaches	to	a	problem	and	their	pros	and	cons.



Definition

Data	mapping	in	a	data	warehouse	is	the	process	of	creating	a	link	between	two
distinct	data	models’	(source	and	target)	tables	or	attributes.



Chapter	2

Data	Mapping	Stages



Abstract

Data	mapping	is	required	at	many	stages	of	the	data	warehouse	lifecycle;	every
stage	has	its	own	unique	requirements	and	challenges.	A	data	mapper’s	biggest
challenge	is	to	understand	how	data	will	flow	from	the	source	system	to	the	final
graphical	user	interface;	this	flow	will	determine	how	data	should	be
transformed	to	achieve	the	end	goal.

Keywords

access	layer;	extract;	transform;	load	(ETL);	landing	area;	load-ready	area;
staging

Data	mapping	is	required	at	many	stages	of	the	data	warehouse	life	cycle;	every
stage	has	its	own	unique	requirements	and	challenges.	A	data	mapper’s	biggest
challenge	is	to	understand	how	data	will	flow	from	the	source	system	to	the	final
graphical	user	interface;	this	flow	will	determine	how	data	should	be
transformed	to	achieve	the	end	goal.



Mapping	from	the	Source	to	the	Data	Warehouse	Landing	Area

This	kind	of	mapping	is	usually	one	to	one,	but	may	sometimes	include
transformations	that	can	be	done	inside	the	source	database	engine.	Such
mapping	helps	by	saving	processing	overhead	toward	the	technology	end	of	the
architecture.



Mapping	from	the	Landing	Area	to	the	Staging
Database

Mapping	from	the	landing	area	to	the	staging	area	is	done	by:

1.	Selecting	a	subset	of	columns	from	the	complete	source	file

2.	Splitting	a	single	column	into	multiple	columns

3.	Using	information	coming	from	the	header	or	trailer	for	different	purposes	to
cast	the	timestamp	or	date	values	to	match	the	Target	Database	formats	and	so
on.



Mapping	from	the	Staging	Database	to	the	Load
Ready	or	Target	Database

In	this	stage	of	the	data	warehouse	lifecycle,	source	data	is	transformed	into	data
warehouse	data;	data	from	here	onward	will	be	treated	as	information.	This	is
why	maximum	importance,	resources,	and	time	should	be	given	to	this	stage	of
data	mapping.	This	book	highlights	various	data	mapping	techniques	for	this
stage.

The	rules	at	this	point	can	be	complex	and	may	involve	multiple	tables	or
sources.	The	rules	here	are	governed	by	the	vision	that	the	data	modeler	has	in
mind	about	the	data	in	a	logical	data	model	(LDM).	All	kinds	of	data
integrations,	history	handling,	data	joining,	lookups,	reference	data	population,
data-type	conversion,	and	so	on	should	be	documented	here.	Usually	this	kind	of
data	mapping	is	referred	to	as	source	matrix	(SMX)	or	detail	transformation
design	(DTD).



Mapping	from	Logical	Data	Model	to	the	Semantic	or	Access	Layer

Data	mapping	LDM	to	the	semantic,	access,	or	PL	layer	involves	data
transformation	to	bring	data	into	a	state	where	business	users	can	run	reports	and
use	the	data	as	information.	We	will	discuss	this	kind	of	data	mapping	in	this
chapter;	however,	Chapter	12	maps	data	for	a	scenario	involving	PL	attributes	in
LDM.



Chapter	3

Data	Mapping	Types



Abstract

There	are	two	types	of	data	mapping	done	in	any	data	warehouse	project.	The
high-level	logical	data	mapping	is	part	of	the	data	modeling	process,	and
implementation-oriented	physical	data	mapping	is	used	to	document	the
transformation	rule	in	detail.

Keywords

logical	data	mapping;	physical	data	mapping

There	are	two	types	of	data	mapping	done	in	any	data	warehouse	project.	High-
level	logical	data	mapping	is	part	of	the	data	modeling	process,	and
implementation-oriented	physical	data	mapping	is	used	to	document	the
transformation	rule	in	detail.



Logical	Data	Mapping

After	the	logical	data	model	(LDM)	is	complete,	the	data	mapper	will	start
mapping	source	elements	to	LDM.	This	is	high-level	mapping	and	provides	a
baseline	for	more	detailed	physical	mappings;	the	rules	written	are	related	more
to	logical	concepts	than	to	implementation.



Physical	Data	Mapping

When	the	physical	data	model	is	complete,	the	data	mapper	will	write	physical
mappings	or	would	physicalize	the	logical	mappings	written	earlier.	Here	more
detailed	rules	are	needed	that	convey	the	mapper’s	vision	of	the	data	to	the	ETL
(extract,	transform,	load)	developer.

In	this	book,	we	will	only	discuss	physical	data	mapping.



Chapter	4

Data	Models



Abstract

The	logical	data	model	defines	how	data	will	be	stored	or	linked	in	the	data
warehouse.	The	process	gives	a	single	picture	of	an	organization’s	business	and
is	the	key	process	in	the	data	warehouse	lifecycle.

Keywords

logical	data	model	(LDM);	data	modeling;	physical	data	model	(PDM);	primary
key;	ER	(Entity	Relationship)	Diagram

Before	we	go	into	a	detailed	discussion	about	data	mapping,	we	need	to
understand	the	work	that	has	been	done	before	data	mapping	starts.	The
sequence	in	which	a	project	usually	flows	is	described	in	Figure	4.1.





Figure	4.1	Data	warehouse	design	steps.

A	data	mapper	needs	to	understand	the	data	model	of	the	project	to	be	able	to
make	correct	data	mappings.	The	model	might	contain	different	forms	of
modeling	techniques	and	require	special	considerations	for	certain	entities	or
tables.

The	data	modeler	starts	by	modeling	the	client’s	real-life	objects	into	high-level
concepts.	This	will	result	in	a	conceptual	model;	it	can	be	high	level	or	a
relatively	detailed	one.	Here	the	data	modeler	will	not	add	any	columns	and
might	club	many	tables	into	a	single	concept.	For	example,	the	data	modeler	can
group	an	employee,	personal	details,	history,	and	so	on	into	one	concept
employee	(Figure	4.2).





Figure	4.2	Data	model	types	for	data	warehouse.

The	next	step	in	the	modeling	process	is	to	identify	logical	entities	in	the	client’s
business,	add	attributes	for	each	entity,	and	create	relationships	among	entities.
This	generates	a	logical	data	model	of	the	business	that	represents	all	entities	of
the	business.	This	model	will	have	complete	information	from	a	logical
representation	perspective,	and	it	will	provide	the	primary	keys	of	every	table,
domain	for	each	attribute,	and	so	on.

After	the	logical	model	is	complete,	the	modeler	creates	a	physical	data	model
using	the	client’s	actual	source	data	and	looking	at	the	client’s	business
requirements.	The	physical	data	model	can	roll	up	or	roll	down	entities	based	on
real	requirements;	similarly,	not-required	entities	or	columns	can	be	deleted.

The	physical	data	model	will	also	define	performance-related	aspects	such	as
indexes,	partitioning,	compression,	and	so	on.



Definition

The	logical	data	model	(LDM)/entity-relationship	(ER)	model	is	a	data	model
for	reporting	and	explaining	the	statistics	and	database	elements	of	a	business
sector	or	the	demands	for	its	procedures	and	techniques	in	an	intellectual	and
theoretical	manner	that	eventually	leads	to	application	in	a	database	(e.g.,	a
correlation	database).	The	central	elements	of	ER	models	are	the	entities	and	the
relationships	shared	by	them.

The	ER	model	uses	a	methodical	and	well-ordered	procedure	to	illustrate	and
outline	a	particular	area	of	the	business	data.	The	data	is	expressed	as	features
and	characteristics	that	are	connected	to	each	other	by	associations	that	portray
the	necessities	among	them.

Entity-relationship	models	are	illustrated	using	an	ER	diagram,	which	makes	use
of	three	elementary	visual	graphic	symbols	to	exemplify	and	symbolize	the	data:
entity,	relationship,	and	attribute	(Figure	4.3).





Figure	4.3	Relationship	of	data	model	graphical	illustration.

Entity

An	entity	is	primarily	interpreted	as	a	place,	an	item,	or	a	person	of	attention	to	a
business	or	an	establishment.	An	entity	demonstrates	a	category	of	items,	which
in	the	actual	world	are	objects	that	can	be	noticed	and	organized	according	to
their	features	and	qualities.	Entities	might	consist	of	numerous	different
characteristics	that	categorize	them.

In	ER	modeling,	it	is	necessary	to	name	and	outline	the	entities	to	enable	an
uncomplicated	and	comprehensible	interpretation	and	correspondence.
Generally,	the	name	of	the	entity	is	represented	morphologically	as	a	noun
instead	of	a	verb.	The	name	of	the	entity	is	chosen	based	on	how	much	it
represents	the	attributes	and	elements	of	the	entity.	The	most	crucial	job	in	ER
modeling	while	designing	an	entity	is	to	identify	a	candidate	key.	Such	keys
identify	the	data	of	entities	uniquely	and	give	them	identification.	The	primary
key	is	one	of	the	candidate	keys	that	is	used	often.	For	example,	a	person’s
candidate	keys	might	include	social	security	number,	passport	number,	mobile
number,	or	any	other	unique	identification.	When	choosing	a	primary	key,	we
might	use	social	security	number	as	primary	key,	because	it	is	used	most
frequently.

An	entity	is	classified	as	an	item	that	has	the	ability	to	have	an	individualistic
actuality	that	is	distinctively	recognizable.	When	we	talk	about	an	entity,	we
generally	mean	a	feature	of	the	actual	world	that	can	be	differentiated	from	the
other	features	of	the	world.

Relationship



A	relationship	is	demonstrated	by	using	lines	drawn	in	between	the	entities.	It
portrays	the	structural	communication	and	relationship	between	the	entities	in	a
model.	A	link	is	appointed	morphologically	using	a	verb.	Figure	4.4	shows	an
ER	diagram.





Figure	4.4	Relationships	between	fact	and	dimensions.

Apart	from	connecting	line	and	name,	we	also	need	to	include	cardinality	of	a
relationship.	This	gives	a	binding	number	that	is	shared	between	both	entities.
The	options	include	one-to-one	(both	entities	will	have	only	one	row	for	a
Primary	Key	Foreign	Key	link),	one-to-many	(parent	table	will	contain	one	row
for	the	primary	key,	but	the	child	table	may	contain	multiple	rows	for	relating
foreign	key	column(s)),	and	many-to-many	(both	tables	may	contain	multiple
rows	for	shared	key	column(s)).

A	top-level	and	influential	ER	diagram	has	names	for	the	relationships;	however,
in	a	circumstantial	and	comprehensive	ER	diagram,	generally	connecting	objects
interpret	the	name	of	the	relationship.	The	relationship	is	demonstrated	by	a	line
drawn	in	between	the	“component”	and	“product	components.”	The	annotations
highlight	the	cardinality.

Whenever	an	entity’s	relationship	is	associated	to	itself,	the	relationship	is	said
to	be	recurrent.	Such	relationships	can	be	established	using	an	associative	entity
or	by	keeping	the	foreign	key	from	the	same	table’s	primary	key.	An	example
could	be	an	employee	table,	where	we	need	to	keep	the	manager	id.	Since	the
manager	is	also	an	employee,	we	can	either	create	a	new	associative	table
‘Employee	Manager’	having	two	foreign	keys	from	employee	or	we	can	create	a
foreign	key	‘Manager	id’	linked	with	the	primary	key	of	the	same	table
(employee	id).

If	the	relationship	has	dependency	between	two	entities,	we	need	to	load	the
primary	key	of	the	parent	table	as	part	of	the	composite	primary	key	of	the	child
table.	For	example,	the	Employee	Address	table	will	contain	Employee	Id
(primary	key	of	Employee	table)	as	part	of	its	own	Primary	key.

Attributes



Attributes	demonstrates	the	features	of	the	characteristics	of	the	entities.	In	the
example	used,	the	description,	product	ID,	and	picture	are	attributes	of	the
product	entity.	The	attribute-naming	customs	are	crucial.	The	name	of	an
attribute	must	be	distinctive	in	the	entity	and	should	be	unambiguous	and	self-
evident.	For	example,	just	mentioning	date	1	and	date	2	is	not	acceptable;	rather,
a	clear	and	understandable	definition	is	required,	such	as	order	and	delivery	date.



Normalized	Data	Model

For	enterprise	data	warehouse,	a	normalized	model	in	third	normal	form	is	the
best	option	for	the	data	model.	Although	relational	integrities	are	not	forced	in
the	model,	they	are	maintained	using	ETL	(extract,	transform,	load)	processes,
keeping	data	connected	within	the	model.

Third	normal	form	data	models	are	normally	used	for	companies	with	large
amounts	of	data	and	multiple	source	systems	requiring	data	consolidation	and
complex	business	queries.	There	are	performance-related	constraints	with	3NF
models,	but	the	benefits	of	having	data	stored	in	this	form	are	far	greater	than	the
performance	impact.	Second,	performance	can	be	optimized	using	well-defined
techniques	from	industry.

Below	is	a	basic	definition	of	the	first	three	normal	forms	with	examples.

First	Normal	Form

A	table	is	in	the	first	normal	form	(1NF)	if

•	The	table	has	a	primary	key.

•	No	single	column	has	multiple	values.

•	The	nonprimary	key	columns	depend	on	the	primary	key.

Second	Normal	Form



The	second	normal	form	applies	to	a	table	if

•	The	table	satisfies	1NF	(first	normal	form).

•	Non-primary	key	attributes	depend	on	all	attributes	of	a	composite	key.

Third	Normal	Form

The	third	normal	form	applies	to	a	table	if

•	The	table	meets	the	criteria	for	2NF.

•	Each	nonprimary	key	attribute	in	a	row	does	not	depend	on	the	entry	in	another
key	column.



Dimensional	Data	Model

Dimensional	modeling	(DM)	includes	the	procedures	and	conceptions	used	in
data	warehousing.	It	is	believed	to	be	disparate	from	ER	modeling.	DM	does	not
consist	of	a	correlated	database.	At	an	analytical	level,	the	DM	technique	can	be
used	for	any	substantial	form,	such	as	a	multidimensional	database	or	even
unproductive	files.

Dimensional	modeling	invariably	uses	the	conceptions	of	dimensions	and	facts.
Usually	the	facts	are	numerical	values	that	can	be	summarized,	and	dimensions
are	divisions	of	rankings	and	illustrators	that	outline	the	facts.

In	certain	aspects,	DM	is	uncomplicated,	more	costly,	and	simpler	to	interpret
than	ER	modeling.	However,	dimension	modeling	is	a	comparatively	up-to-date
idea	that	is	not	vigorously	defined	in	details,	when	compared	with	ER	modeling.

Dimensional	modeling	has	numerous	fundamental	concepts:

•	Facts

•	Dimensions

•	Measures

Fact

A	fact	is	made	up	of	associated	data	items,	including	estimates	and	context	data.
Each	aspect	and	feature	demonstrate	a	business	object,	a	business	negotiation,	or
an	occasion	that	can	be	used	in	interpreting	the	business	or	business	procedures
and	techniques.	In	a	data	warehouse,	facts	are	administered	in	the	tables	that
consist	of	all	the	numerical	data	and	information.



Dimension

Dimension	is	an	integration	of	the	representatives	or	components	of	the	same
sorts	of	perspectives.	A	dimension	is	generally	expressed	as	an	axis	in	a	diagram.
In	DM,	each	data	point	in	the	fact	table	is	related	to	one	and	only	one	associate
from	each	of	the	multifarious	dimensions.	That	is,	dimensions	regulate	the
contextual	framework	for	the	facts.	Numerous	analytic	techniques	are	used	to
quantify	the	influence	of	the	dimensions	on	the	facts	and	features.

Dimensions	are	the	boundaries	over	which	we	want	to	perform	the	OLAP
(Online	Analytic	Processing).	For	example,	to	interpret	the	product	sales	in	a
database,	the	common	dimensions	could	include:

•	Employees

•	Customers

•	Time

•	Location

•	Budget

Measure

A	measure	is	the	mathematical	aspect	of	a	fact,	illustrating	the	presentation	or
performance	of	the	business	in	contrast	to	the	dimensions.	The	real	numbers	are
referred	to	as	variables.	For	example,	measures	are	the	transactions	in	money,	the
measure	of	transactions,	expenses	of	the	supply,	and	quantities	of	the	sales.	A
measure	is	classified	by	the	integration	of	the	associates	of	the	dimensions	and	is
placed	on	the	facts.



Drill-Down	and	Roll-Up

Drill-down	and	roll-up	are	procedures	for	moving	perspective	up	and	down
following	the	dimensional	ranking	levels.	With	the	drill-down	potential	and
ability,	users	move	on	to	the	higher	levels	of	details.	With	the	roll-up	technique,
users	can	zoom	out	to	visualize	a	condensed	measure	of	data.	The	route	of
navigation	is	regulated	by	the	rankings	within	the	dimensions.	A	roll-up
performance	is	illustrated	by	Figure	4.5.





Figure	4.5	Roll-up	from	city	to	country.

Roll-up	is	accomplished	through	ascending	a	conceptual	ranking	for	the
dimension	position.	Primarily,	the	conceptual	ranking	or	hierarchy	was
“street<city<province<country.”	When	we	roll	up	a	dimension,	data	is
summarized	to	a	higher	level.	In	this	case	we	are	summarizing	data	(from	a	city
to	country)	to	get	a	high-level	picture.	In	roll-up,	one	or	multiple	dimensions	are
removed	from	the	report.

A	roll-down	is	performed	when	we	want	to	see	more	details	of	a	summary
report.	(Figure	4.6	shows	a	roll-down.)	In	other	words,	we	are	moving	down	the
hierarchy	(in	this	example,	for	time	hierarchy).	The	concept	of	time	has	two
levels:	Year	(higher	level)	and	Quarter	(lower	level).	When	we	drill	down,	we
are	adding	dimensions	to	summary	data,	making	it	relatively	more	detailed.	This
steers	the	data	from	not	very	detailed	data	to	extremely	elaborative	data.





Figure	4.6	Roll-down	from	quarter	(QTR)	to	month.



Star	Schema

Numerous	business	administration	data	warehouses	use	the	dimensional	model
in	which	a	primary	fact	table	holding	the	data	(e.g.,	sales	or	support	calls)	is
encompassed	and	associated	with	other	fact	tables	including	the	dimensions	of
the	fact	table.

The	star	schema	framework	is	the	most	straightforward	form	of	the	data	mart
schema.	It	consists	of	one	or	more	fact	tables	with	reference	to	dimension	tables.
The	star	schema	is	considered	a	special	case	of	the	snowflake	and	is	more
functional	and	constructive	for	tackling	easy	and	simple	inquiries.

The	star	schema	framework	is	the	most	manageable	and	uncomplicated	data
warehouse	schema.	It	is	referred	to	as	star	schema	because	its	diagram	is	similar
to	a	star,	with	several	different	marks	and	spots	diverging	from	the	origin.	The
fact	table	is	located	in	the	middle	of	the	star,	and	the	different	branches	of	the
star	are	known	as	dimension	tables.	Normally,	the	fact	tables	of	the	star	schema
are	present	in	the	3NF,	and	the	dimensional	tables	are	denormalized.	Even
though	the	star	schema	is	the	easiest	approach,	it	is	not	much	used	these	days.

The	star	schema	distinguishes	the	data	into	facts,	which	include	all	the	numerical
data;	the	dimensions	are	the	illustrative	and	graphical	aspects	of	the	facts.

Fact	Tables

A	fact	table	may	consist	of	data	of	the	facts	in	detail	and	totality.	A	fact	table
stores	quantitative	information	for	analysis	and	may	consist	of	data	of	the	facts
in	detail/totality.	Generally	there	are	two	separate	columns	in	a	fact	table:	foreign
key	to	dimension	tables	and	measures.



Dimension	Tables

A	dimension	is	a	constitution	and	a	framework	that	is	normally	comprised	of	one
or	more	than	one	ranking	or	scale	used	for	grouping	and	designating	the	data.	A
dimension	that	lacks	any	hierarchy	or	ranking	is	known	as	a	flat	dimension.	Each
dimension	table	has	its	own	primary	keys,	which	are	a	constituent	of	the
composite	primary	key	of	the	fact	table.	The	dimensional	aspects	assist	in
explaining	the	value	of	dimension.	Usually,	they	are	illustrative,	pictorial	values.
In	size,	the	dimension	tables	are	usually	more	compact	than	fact	tables.

Whereas	a	normal	fact	table	holds	the	data	and	information	on	sales,	a	dimension
table	stores	the	data	relevant	to	the	geographical	location,	consumers,	timings,
and	products.

A	star	schema	has	the	following	features:

•	It	is	uncomplicated	and	easily	understandable.

•	It	has	substantial	inquiry	effectiveness	and	a	small	number	of	tables	to	join.

•	It	is	most	frequently	used	up	in	data	warehouse	administration	and	is	assisted
by	numerous	business	comprehension	devices.

In	Figure	4.7,	the	fact	table	consists	of	four	fundamental	dimensions:	customer,
product,	time,	and	staff.	All	of	these	dimensions	are	associated	with	the	fact
table	by	indexes	(the	highlighted	parts)	to	allow	the	tables	to	be	linked	and	to
permit	fast	queries	and	data	interpretations.





Figure	4.7	Relationships	between	fact	and	dimensions.

This	data	model	is	uncomplicated,	enables	rapid	recovery,	and	can	be	easily
understood	without	alternating	all	the	current	regular	reports	and	inquiries.	A
disadvantage	to	this	model	is	that	there	is	some	data	dismissal,	which	can
potentially	result	in	irregularity	if	all	of	the	redundant	data	is	kept	up-to-date.



Chapter	5

Data	Mapper’s	Strategy	and	Focus



Abstract

A	data	mapper	uses	the	available	tools	or	information	in	the	mapping	source	data
to	target,	but	needs	a	thinking	strategy	should	he	or	she	use	to	accomplish	this
task.

Keywords

data	mapper;	data	mapping	strategy;	thinking	process

A	data	mapper	is	the	person	responsible	for	mapping	source	data	on	target	data.



Mapper	Who?	How	Does	He	or	She	Do	It?

Let’s	take	an	example.	Consider	a	paper	game	that	we	used	to	enjoy	playing	in
childhood,	connect	the	dots.	In	Figure	5.1,	it	is	very	clear	and	easy	to	connect
one	dot	to	the	other	because	every	dot	is	numbered.





Figure	5.1	Connect	the	dots	example	with	labels.

But	what	if	the	numbering	is	missing	against	the	dots	(Figure	5.2)?	We	may	still
be	able	to	complete	the	picture	and	prove	that	this	is	a	picture	of	a	flower.	There
is	a	chance	of	making	mistakes,	but	eventually	we	may	be	able	to	conclude	that
this	is	what	we	think	of	as	a	flower.





Figure	5.2	Connect	the	dots	example	without	labels.

Now	let	us	consider	Figure	5.3.	In	a	real-life	situation,	this	is	the	starting	point
for	a	data	mapper.	A	data	mapper	identifies	actual	dots	to	be	connected	by
getting	guidance	from	logical	data	model	(LDM)/physical	data	model	(PDM),
meeting	subject	matter	experts	(SMEs),	profiling	data,	and	other	means.





Figure	5.3	Connect	the	dots	example	with	no	clues.

Let’s	assume	that	with	guidance	and	support,	the	mapper	identifies	the
connection	between	the	dots	and	finally	comes	up	with	something	that	looks	like
Figure	5.4.





Figure	5.4	Results	of	the	data	mapper’s	analysis.

If	the	data	mapper	is	asked	to	present	his	or	her	opinion	based	on	the	above
picture,	he	or	she	might	assume	that	it’s	an	elephant.	The	word	“assume”	is	very
dangerous	in	data	mapping;	assumptions	can	cause	errors	that	might	be
identified	at	a	much	later	stage	that	may	result	in	a	lot	of	rework.

With	a	few	more	discussions	with	SME,	more	dots	are	identified	and	connected
(Figure	5.5).





Figure	5.5	The	data	mapper	identifies	the	correct	concept	with	further
analysis.

The	dots	may	look	like	a	giraffe	now;	again,	it	is	just	an	assumption.

Assumptions	should	be	avoided.	Every	time	we	make	an	assumption,	it	will	come
back	as	rework.

A	data	mapper	must	perform	detailed	analysis	and	data	profiling	to	avoid
assumptions.	Usually	we	have	to	rely	on	assumptions	when	the	client	SME	or
source	data	model	is	missing.	In	such	cases,	data	mappers	should	use	other
methods	for	an	accurate	decision-making	capability.	Assumptions	might	make	us
feel	comfortable	for	a	while,	but	they	may	be	hazardous	in	the	longer	run.

The	SME	is	the	best	source	of	information	for	data	mappers	because	it	helps	to
provide	source	documentation	and	explanations.	The	SME	should	be	available	to
data	mappers	until	the	design	of	the	project	is	complete.	To	fabricate	an	optimum
and	reliable	data	mapping	document,	the	data	mapper	and	data	modeler	should
sit	with	the	SME	at	same	location	to	hold	effective	communication.



Chapter	6

Uniqueness	of	Attributes	and	its	Importance



Abstract

The	uniqueness	of	an	item	gives	it	identity	in	its	environment.	Without
uniqueness,	we	cannot	identify	objects	or	concepts	in	our	business;	hence,	it	is
very	important	to	find	all	information	that	is	required	for	identification	purposes.
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The	uniqueness	of	an	item	gives	it	identity	in	its	environment.	A	person	living	in
a	country	is	identified	by	his	or	her	unique	social	security	number;	this	identity
differentiates	him	or	her	from	the	rest	of	the	people	living	in	the	same	country.	It
enables	the	person	to	get	a	bank	account,	home	and	car	registration,	job,	and	so
on.

Uniqueness	is	mandatory	in	the	real	world	and	may	be	defined	by	the	level	of
uniqueness	depending	on	its	environment,	organization,	locale,	and	so	on.	For
example,	in	an	office,	every	employee	is	uniquely	identified;	however,	glasses
are	not	uniquely	identified.	The	reason	is	that	the	company	does	not	need	to
track	the	activities	of	the	glasses	or	cups.	They	do	not	hold	a	high	value	to	the
company,	and	a	breakage	is	insignificant	in	terms	of	cost	to	the	company.

Can	we	say	the	same	about	laptops?	Every	company	keeps	track	of	laptops	given
to	its	employees	and	uses	a	service	tag	to	identify	them	uniquely.	The	reason	for
identifying	a	laptop	uniquely	is	to	ensure	that	it	can	be	tracked	for	administrative
purposes	and	claiming	a	warranty	from	the	supplier	in	case	of	a	breakdown.

Similarly,	in	data	warehousing,	we	must	understand	the	level	of	uniqueness	that
a	company	maintains.



The	uniqueness	of	three	industries	is	highlighted	in	this	chapter.



Telecom

In	the	telecom	industry,	a	connection	is	identified	by	a	mobile	number;	however,
the	hierarchy	is	of	multiple	levels.

Level	1=Customer:

Uniquely	identified	by	customer	ID.	XYZ	company	is	customer	of	Orange	UK
and	is	uniquely	identified	by	customer	number=TD123

Level	2=Subscriber:

Uniquely	identified	by	account	number	(not	by	mobile	number	because	it	can
change	on	request)	account	number=2389749

Level	3=Subscription:

A	subscription	is	a	product	subscriber	by	a	user	(account	holder)	and	is	uniquely
identified	by	product	ID

At	each	level,	uniqueness	is	mandatory	because	it	is	required	for	billing	and
other	purposes.	One	can	assume	that	a	connection	is	uniquely	identified	by	a
mobile	number,	however	same	mobile	number	can	be	given	to	a	new	customer
once	old	customer’s	connection	is	closed.	Both	mobile	number	and	SIM	number
(IMSI)	for	a	connection	can	change;	hence,	they	do	not	provide	the	necessary
uniqueness	required	to	run	the	business.



Manufacturing

Let’s	take	an	example	of	a	car	manufacturer.	Let’s	assume	that	CAR_MAKER
uniquely	identifies	a	car	by	giving	it	a	companywide	unique	ID.

Level	1=Batch:

All	cars	of	type	Civic	come	in	one	match,	so	a	batch	is	identified	uniquely.	Batch
number=2013_CIVI_HYBRID_EUII

Level	2=Car:

All	cars	within	a	batch	are	given	a	unique	chassis	number.
Chassis=HSU_HJKSJK_72373

Level	3=Engine:

Because	an	engine	can	be	replaced	during	the	lifecycle	of	a	car,	it	is	necessary	to
give	it	a	unique	ID.	Engine	number=8978977

Note	here	that	CAR_MAKER’s	internal	car	ID	is	useful	to	CAR_MAKER,	but
when	it	comes	to	global	operations	and	car	usage,	the	chassis	number	identifies
each	car	uniquely.	When	a	car	is	registered	in	any	country,	the	chassis	number
will	be	used	rather	than	CAR_MAKER’s	own	identification.	Also,	an	engine	has
unique	identification	because	it	requires	repairing	or	replacing.

There	could	be	more	examples	of	manufacturers	that	want	identification	of	other
car	parts	as	well.	For	example,	CAR_MAKER_2	might	give	unique
identifications	to	doors,	suspension,	seats,	and	so	on.	CAR_MAKER_2	might	be
looking	to	give	better	“after-sale	services”	to	its	users	by	knowing	which



supplier	provided	a	faulty	component,	which	factory	worker	installed	the
component,	at	what	time	the	component	was	installed,	which	production	line
assembled	the	car,	and	so	on.



Finance

In	the	financial	sector,	let’s	take	example	of	a	bank	FI_BANK.	A	bank	identifies
an	account	by	an	account	number.

Level	1=Customer

Uniquely	identified	by	a	SSN	number=SD12383-1980

Level	2=Account

Uniquely	identified	by	an	account	number=323-2323321-98

Level	2=Credit	card

Uniquely	identified	by	a	credit	card	number=8977645282726



Uniqueness	in	Data	Warehouse

More	unique	identification	means	more	control	over	business;	however,
uniqueness	has	costs	associated	with	it	such	as	IT	servers,	software	licenses,	and
data	entry	at	every	point	the	item	is	used	(supplier,	testing,	assembly,	quality
check).	Each	company	must	make	its	own	decision	about	level	of	uniqueness
based	on	its	business	model	and	the	costs	associated	with	uniqueness.

If	we	talk	about	data	warehouse,	the	more	unique	the	level	of	data,	the	better	the
reporting	capability	for	business	users.	At	the	same	time,	it	requires	more	work
in	design	and	implementation.

The	data	mapper	must	identify	every	table	in	source	by	its	unique	primary	key;
similarly,	every	table	in	the	logical	data	model	should	have	a	unique	primary
key.

The	data	mapper	should	also	know	which	columns	he	or	she	needs	to	use	to	get
unique	data	when	there	are	multiple	rows	for	the	same	primary	key.	This	is	one
of	the	biggest	challenges	in	data	mapping	and	requires	the	subject	matter
expert’s	input	along	with	data	profiling	to	identify	the	correct	column	to	get	the
correct	data	from	staging	to	the	target	area.

For	history	handling,	there	are	two	levels	of	uniqueness	to	understand.	Number
one	is	the	primary	key	of	the	overall	table,	which	is	a	list	of	columns	that	make	a
row	unique.	Number	two	is	the	list	of	columns	that	requires	history	handling	if
they	change.	For	example,	Employee	Address	might	have	a	unique	primary	key
made	up	of	Employee	ID	and	Address_Start_date;	however,	change	of	address
will	be	checked	for	Employee	ID	only.



Chapter	7

Prerequisites	of	Data	Mapping



Abstract

Data	mapping	can	be	started	after	all	required	information	is	available	to	the	data
mapper;	this	chapter	explains	these	prerequisites.

Keywords
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Before	someone	starts	data	mapping,	he	or	she	must	have	access	to	the
following.



Logical	Data	Model

The	first	thing	a	data	mapper	needs	to	refer	to	is	the	logical	data	model	(LDM)
of	the	project.	This	is	the	target	he	or	she	will	be	mapping	the	data	on.	To
accomplish	this	task,	the	data	mapper	needs	to	analyze	the	following	items
within	LDM.



Entities	and	Their	Description

The	data	mapper	must	understand	every	entity	and	its	intended	purpose	in	LDM.
He	or	she	should	also	classify	entities	into	history,	master,	transaction,	reference,
data	warehouse	maintained,	and	associative	entities.



Attributes	and	Their	Description

In	a	data	warehouse,	most	entities	and	attributes’	names	are	kept	generic	so	they
can	be	used	for	multiple	types	of	data	and	to	maintain	business	concepts	of	the
organization	rather	than	source-specific	names.	This	means	that	the	data	mapper
should	understand	an	attribute’s	purpose	in	the	entity.	The	description	of	the
column	provides	necessary	information	about	the	attribute.	For	example,
Party_Id	is	a	unique	ID	that	will	identify	a	party.	A	party	can	be	an	employee,
customer,	supplier,	shop,	and	so	on.

Primary	Key	of	Entities

As	discussed	in	Chapter	6,	the	primary	key	must	be	defined	for	every	entity	in
the	data	warehouse	LDM.	Primary	keys	are	usually	well	defined	in	all	logical
data	models;	however,	data	mappers	must	understand	why	certain	columns
become	part	of	a	primary	key	(e.g.,	entities	that	have	multiple	columns	in	the
primary	key,	especially	history	and	associative	entities).

Another	usage	of	primary	key	is	in	natural	keys	and	surrogate	keys.	If	the
solution	architect	of	the	project	has	decided	to	use	surrogate	keys,	then	you	will
find	a	single	column	in	most	master	entities	such	as	party	(Party_Id)	and	address
(Address_Id).	However,	if	natural	keys	have	been	used	for	the	primary	key	of
the	table,	then	you	will	find	multiple	attributes	in	the	primary	key	of	the	table.
For	example,	in	the	party	table,	there	could	be	two	attributes	of	the	primary	key,
that	is,	Party_Id	mapped	from	the	source	and	Party_Type_Cd	to	uniquely
identify	the	parties	if	different	sources	for	this	table	are	using	the	same	type	of
party	ID.	For	example,	the	supplier	management	department	and	finance
department	both	could	be	using	numeric	IDs:	751	can	be	the	ID	for	the	supplier
as	well	as	for	an	employee.	Within	the	sources,	they	are	unique,	but	when	we
bring	both	types	of	data	into	the	party	table	of	the	data	warehouse,	there	will	a



problem	with	uniqueness.

Relationship	Between	Entities

Relationships	within	two	entities	are	well	defined	and	are	usually	named.
Understanding	relationships	is	important	because	sometimes	the	data	mapper	is
not	familiar	with	the	industry	for	which	the	project	is	being	implemented.
Analyzing	relationships	will	give	thorough	business	understanding	of	the
organization.	For	example,	consider	Figure	7.1.	The	sales	order	will	have
information	about	the	order	given	to	the	organization	by	a	customer,	and	an
invoice	is	generated	when	a	product	is	delivered.	The	relationship	here	says	that
a	sales	order	has	an	invoice.	In	other	words,	an	invoice	will	be	generated	against
the	sales	order.





Figure	7.1	Relationship	name	between	two	tables.

Cardinality	of	the	Relationship

In	Chapter	6,	we	discussed	the	example	of	the	telecom	sector.	We	saw	that	a
customer	can	have	more	than	one	connection	to	the	telecom	company.	For
example,	a	company	might	provide	an	official	connection	to	all	its	employees.
Therefore,	cardinality	between	the	customer	and	employee	is	one	to	many.

Similarly,	every	employee	can	get	multiple	subscriptions	from	the	telecom
operator.	Therefore,	cardinality	between	the	subscriber	and	subscription	is	one	to
many.	However,	if	a	subscription	is	identified	by	a	unique	ID	only,	and	its
instance	is	not	assigned	a	unique	ID,	then	the	cardinality	between	the	two	will	be
many	to	many.

Change	Capture	Column	of	History-Handled	Entities

In	history-handled	entities,	the	data	mapper	should	identify	the	entity	for	which
change	will	be	tracked.	Usually	history-handled	entities	have	multiple	columns
depending	on	logic.

In	such	cases,	it	is	ideal	to	identify	the	list	of	columns	for	which	change	in	other
columns	will	occur	as	a	result	of	closing	an	older	row	and	opening	a	new	record.



Physical	Data	Model

A	physical	data	model	(PDM)	study	is	equally	important	during	the	data
mapping	process.	PDM	gives	information	about	entities	that	have	rolled	up	from
the	LDM,	primary	indexes,	data	types	of	attributes,	secondary	indexes,
partitioning,	compressing,	journaling,	fallback,	character	set,	and	so	on.

All	mappings	from	the	source	will	be	made	to	the	PDM	target	tables.	The
transformation	rules	are	also	based	on	PDM	data	types	and	so	on.

The	PDM	is	also	important	because	in	certain	mappings,	we	will	have	to	join	the
source	table	with	target	tables;	in	such	cases,	the	primary	index	(PI)	of	the	source
and	target	table	should	be	known	to	have	some	idea	of	performance	of	queries.



Source	System	Data	Model

In	most	projects,	the	source	entity	or	attribute	list	is	considered	enough	for	data
mapping.	However,	the	source	data	model	is	necessary	for	understanding	the
source	data.	Just	like	data	warehouse	LDM,	source	LDM	provides	information
about	relationships,	primary	keys,	cardinality,	and	so	on.

It	is	absolutely	mandatory	to	identify	the	primary	key	of	all	source	tables.
Without	this	information,	there	can	be	duplicates	in	data,	and	the	data	mapper
will	not	be	able	to	write	correct	rules.	Having	the	exact	primary	key	of	the
source	entity	will	help	the	data	mapper	create	a	rule	(rank,	qualify,	group	by)	to
select	distinct	data	out	of	duplicates	(which	can	happen	because	of	multiple	day
extracts	or	any	other	reason).



Source	System	Table	and	Attribute	Details

Usually	during	data	modeling,	stage	source	system	tables	and	their	attributes	are
listed	down,	and	high-level	mapping	is	also	done	giving	the	target	table	where
the	attribute	will	be	mapped.

The	exact	data	type,	character	set,	compression,	indexes,	and	so	on	are	necessary
to	create	the	data	mapping	document.



Subject	Matter	Expert

The	subject	matter	expert	(SME)	provides	detailed	information	about	the	source
and	answers	all	questions	from	the	data	warehouse	team.	The	SME	will	also
provide	required	documentation	about	the	source	and	can	give	information	about
issues	that	are	not	documented	or	may	need	special	treatment.	Good	SME
availability	can	result	in	a	high-quality	data	mapping	document.



Production	Quality	Data

Last,	production	quality	data	should	be	available	to	the	data	mapper	for	profiling
and	analysis.	The	data	mapper	will	run	queries	against	the	data	for	making	rules.
If	the	data	sample	does	not	represent	real	data,	then	transformation	rules	will	be
wrong,	and	the	project	will	be	affected.



Chapter	8

Surrogate	Keys	versus	Natural	Keys



Abstract

A	data	warehouse	can	use	two	types	of	identification	systems	for	its	data.
Natural	keys	come	from	the	source	system,	and	surrogate	keys	are	defined	in	the
data	warehouse.
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One	of	the	key	decisions	in	data	warehouse	architecture	is	about	selecting
primary	keys	for	the	tables.	The	decision	is	made	based	on	multiple	factors,	such
as:

•	Performance

•	Data	quality

•	Extract,	transform,	load	(ETL)	architecture

•	Metadata	management

•	Space

•	New	system	integration

We	will	not	discuss	this	here	because	the	decision	is	made	by	the	solution
architect,	and	the	data	mapper	has	to	follow	the	guidelines	irrespective	of	the
decision	made.	In	this	chapter,	we	discuss	the	impact	of	data	mapping	on	both
types	of	keys,	natural	and	surrogate.



Natural	Keys

Natural	keys	make	data	mapping	very	easy	and	controllable.	The	mapping	is
done	one	to	one	from	the	source	to	the	target.

However,	missing	information	means	that	the	data	mapper	will	have	to	make
special	rules	to	allow	such	data	into	the	logical	data	model	(LDM).	For	example,
consider	that	sales	data	is	loaded	into	the	LDM	SALES	table	(PK/PI=sale_id),
and	sale_id	is	missing	for	2000	of	10,000	rows.	In	this	case,	the	data	mapper	will
have	to	make	a	dummy	sale_id	so	that	data	can	be	populated	into	the	LDM
SALES	table.



Surrogate	Keys

Surrogate	keys	require	one	additional	step	in	the	ETL	process	and	similarly,	one
additional	mapping	from	the	source	for	every	key.	There	is	also	dependency	in
the	ETL	process	during	execution;	the	surrogate	key	should	be	generated	before
it	is	used	in	subsequent	mappings.

Special	rules	are	required	to	handle	missing	data	if	other	sources	are	providing
the	data.	Surrogate	keys	can	help	significantly	if	multiple	identifications	are
available	for	the	same	concept.



Chapter	9

Data	Mapping	Document	Format



Abstract

After	the	data	mapper	has	analyzed	everything	and	has	made	a	decision	about
the	mapping,	he	or	she	needs	to	document	the	mapping.	This	document	is	used
as	a	blueprint	by	extract,	transform,	load	developers	for	implementation
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After	the	data	mapper	has	analyzed	everything	and	has	made	a	decision	about
the	mapping,	he	or	she	needs	to	document	the	mapping.	Word	and	Excel
documents	are	used	mostly	depending	on	the	need	of	the	project.

We	will	use	an	Excel	file	for	documenting	all	the	rules.	Let’s	divide	every
mapping	into	two	sections.



Header-Level	Rules

For	better	documentation	and	communication	to	the	ETL	team,	all	rules	related
to	table	joining,	filtering,	and	qualifying	should	be	documented	in	the	header.	In
other	words,	anything	that	will	come	after	the	“FROM”	part	of	SQL	should	be
documented	here.



Column-Level	Rules

All	column-level	rules	are	documented	in	front	of	every	attribute.	These	rules
may	include	data	type	casting,	ranking,	case	statements,	NULL	value	handling,
timestamp	manipulation,	data	split,	and	so	on.



Major	Parts	of	the	Data	Mapping	Document

Following	are	the	major	parts	of	the	data	mapping	document.

1.	Change	log:	Gives	details	of	the	changes	done	in	the	current	release

2.	Mapping	tracker:	Gives	a	list	of	mappings	and	a	small	description

3.	Legend:	Gives	details	of	the	color	scheme	or	any	other	method	used

4.	Data	mappings:	Actual	mappings

5.	Reference	data:	Constant	values	defined	by	data	warehouse	for	types,	roles,
reasons,	and	other	reference	codes	(separate	document)

6.	Loading	dependency:	Defines	the	source	system	level	loading	dependency



Data	Mapping	Columns	Explained

See	Figure	9.1.





Figure	9.1	Data	mapping	example.

Change	Date

This	column	contains	the	date	when	the	rule	is	changed	and	a	row	marker	(N,	U,
or	D).	N	stands	for	new,	U	for	update,	and	D	for	deleted	mapping	or	row.

Subject	Area

Subject	area	from	the	logical	data	model	(LDM):	If	the	target	table	shares
multiple	subject	areas,	then	ask	the	data	modeler	to	identify	the	most	relevant
areas.

Target	Table	Name

Target	table	name	from	physical	data	model	(PDM)

Target	Column	Name

Target	column	name	from	PDM



Data	Type

Data	type	of	target	column	from	PDM

PK

Is	this	column	the	primary	key	in	logical	data	model	(LDM)?	Use	Y	for	yes	and
N	for	no.

Nullable

Is	this	column	nullable?	Use	Y	for	yes	and	N	for	no.

Source	System

This	is	the	source	system	from	which	this	mapping	is	sourced.	There	can	be	two
sources	in	certain	cases.	Use	the	source	system	that	is	providing	data	for	the
primary	key	of	the	target	table.



Record	ID

The	record	ID	uniquely	identifies	the	mapping	for	a	target	table.	For	example,
the	PARTY	target	table	can	have	three	mappings	from	the	same	source;	the
record	ID	will	be	EMS001,	EMS002,	and	EMS003.

Source	Table	Name

This	is	the	name	of	the	source	table	from	which	the	data	will	be	loaded	into	this
target	table.	If	no	column	from	the	source	is	used,	then	write

ETL:	for	all	values	that	are	populated	during	the	loading	process	such	as
Current_Timestamp

CONTANT:	if	a	hardcoded	value	is	used	or	a	lookup	is	made	from	another	table
based	on	a	constant

If	two	tables’	columns	are	used	from	the	source,	then	write	both	tables’	names.

Source	Column	Name

This	is	the	column	names	whose	value	will	be	loaded	into	the	target	column.	If
two	columns	are	used,	then	write	both	columns’	name	here.	For	constants
(hardcoded	and	lookups),	enclose	them	in	quotes	(e.g.,	“1”).

Data	Type	of	Source	Column



Source	database	data	type	of	the	column.

Transformation	Category

This	column	is	very	important	for	the	ETL	team	that	will	develop	the	mappings.
It	categorizes	every	column	based	on	its	treatment	in	mapping.	Possible	values
are:

•	Direct:	Direct	mapping	of	course	column;	no	transformation	of	any	kind

•	Transformation:	There	is	some	rule	for	this	column;	the	actual	rule	is	in	the
Transformation	Rule	column

•	Hardcoded:	Insert	the	hardcoded	value	in	the	Source	Column	Name	column.

•	Lookup:	Use	value	in	Source	Column	Name	and	look	it	up	in	table	whose
foreign	key	is	in	Target	Column	Name.	The	lookup	will	be	on	the	description	or
name	column,	and	the	primary	key	column	value	will	be	used	in	mapping.

Transformation	Rule



Here	we	document	actual	transformation	rule	for	the	column	and	provide	all
relevant	details.	It	is	good	practice	to	write	the	rule	in	easy-to-understand	words
or	in	Pseudo	SQL	code.	However	when	it	is	difficult	to	explain	a	rule	in	words,
SQL	code	can	be	used.

Updated	By

This	column	gives	the	data	mapper’s	name	that	created	or	updated	the	mapping.

Mapping	Priority	or	Sequence

This	column	gives	the	loading	sequence	of	mappings	(i.e.,	which	mapping	is
loaded	first	and	which	afterward).



Chapter	10

Data	Analysis	Techniques



Abstract

Understanding	source	data	requires	special	techniques	and	strategies	from	the
data	mapper.	Because	of	limited	time,	the	data	mapper	should	create	a	strategy
and	focus	on	areas	that	help	in	completing	the	puzzle.
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Earlier	chapters	have	discussed	the	importance	of	getting	maximum
understanding	of	the	data.	After	the	data	mapper	knows	the	logical	and	physical
details	of	the	data,	he	or	she	can	create	good	mapping.

Data	can	be	understood	using	different	techniques,	starting	from	meetings	with
the	subject	matter	expert	(SME)	to	running	SQL	queries	on	the	dataset.	A	data
mapper	is	extremely	lucky	if	he	or	she	gets	all	the	information	from	the	client’s
SME,	but	this	is	not	usually	the	case,	and	the	data	mapper	must	use	different
techniques	for	analyzing	the	data.

Analyzing	source	data	requires	a	mind	full	of	curiosity	and	the	ability	to	dig
deep.	From	standard	approaches	of	data	analysis	to	specialized	case-based
techniques,	the	data	mapper	spends	most	of	his	or	her	time	analyzing	data.	The
key	rule	here	is	to	understand	the	data	in	totality	and	not	leave	anything	on
assumption.

This	chapter	discusses	the	tools,	technologies,	and	techniques	for	data	analysis.



Source	Data	Sample

The	first	thing	you	need	is	access	to	the	client’s	source	data.	A	good	amount	of
data	sample	will	help	you	run	different	queries.	A	good	data	sample	can	be
defined	as	the	“amount	of	data	that	represents	current	and	historic	production
data.”	Representation	is	vague	term	and	should	be	defined	after	meeting	with	the
client	and	getting	an	overview	of	the	source.

For	a	transactional	source	system,	a	good	data	sample	can	be	defined	as	X
month’s	data	for	the	past	Y	years.	If	the	client	migrated	the	source	system	in	the
past,	then	you	need	to	have	the	same	amount	of	data	from	the	old	source.	X	and
Y	can	be	mutually	agreed	on	with	the	client.	Normally,	if	you	are	taking	data
from	all	previous	years,	then	1	month	per	year	is	sufficient,	but	there	can	be
cases	in	which	1	month	might	not	be	enough.	For	example,	a	retailer	would	have
a	large	number	of	transactions	around	Christmas	and	the	summer	sales	time.

Organizations	with	large	amounts	of	data	change	their	operational	(OLTP)
systems	often	for	many	reasons.	When	analyzing	data,	you	should	have	access	to
all	previous	systems	if	history	data	is	required	to	meet	business	requirements.

For	the	master	data	of	the	client,	it	is	good	practice	to	get	the	complete	dataset.
This	data	will	be	joined	many	times,	and	missing	data	might	result	in	wrong
results.

Direct	Access

The	best	scenario	is	when	the	client	gives	direct	access	to	the	source	system.	For
example,	if	the	client	is	using	MSSQL	(Microsoft	SQL	Database	Engine)	for	its
source,	they	can	provide	a	user	and	a	work	database	in	which	the	analyst	can
create	temporary	tables	for	analysis.



Sometimes	getting	this	kind	of	access	is	not	possible	because	of	security	or	other
reasons.	Another	reason	could	be	avoiding	heavy	queries	on	the	operational
system;	service	providers	usually	have	SLA	agreements	and	do	not	allow	such
analysis	queries	to	be	executed	on	a	source.

Getting	access	to	the	source	system	can	have	a	big	impact	on	the	success	of	the
project.

Extraction	from	a	Source

Most	of	the	time,	the	client	will	provide	read-only	access	to	its	source	system,
and	you	are	allowed	to	load	data	in	a	given	time	window.

The	data	warehouse	team	can	create	a	connection	with	the	source	and	bring	data
to	their	own	database.	Further	analysis	can	be	done	on	the	data	warehouse
database.

Data	Files

The	last	option	for	receiving	a	data	sample	is	in	files	provided	by	the	client.
These	files	may	have	a	limited	amount	of	data	that	does	not	fulfill	analysis
requirements;	nevertheless,	these	files	provide	the	best	possible	situation.

In	this	kind	of	situation,	it	is	good	practice	to	first	analyze	the	available	source
data	and	then	request	specific	data	from	the	client	based	on	results.	After
confidence	is	built,	more	data	can	be	requested	from	the	client.



What	to	Look	For

The	data	mapping	process	starts	with	understanding	of	all	source	systems	and
how	they	connect	with	each	other.	An	enterprise	data	warehouse	is	only
beneficial	if	information	from	different	sources	is	combined	to	give	a	single
picture	of	the	organization.	Hence,	it	is	very	important	to	verify	the	connection
using	actual	data.

High-Level	Inter-Source	System	Relationship

The	client	provides	documentation	that	describes	the	source	system,	and	a
fruitful	meeting	can	help	the	data	mapper	understand	the	connection	between
different	sources.	Because	you	have	sample	data	available,	start	running	SQL
queries.

Consider	that	we	are	making	a	data	warehouse	for	a	bank,	and	it	has	two
sources.	The	first	source,	ACC	(Accounts),	gives	the	master	data	for	an	account
holder	and	the	second	source,	TRN	(transactions),	provides	details	of	daily
transactions.

From	an	analysis	point	of	view,	both	sources	should	connect	based	on	account
number;	that	is,	a	transaction	can	only	be	done	if	the	customer	already	has	a
bank	account,	and	an	account	must	have	at	least	one	transaction	because	the
customer	opened	an	account.

Start	by	joining	both	tables.

Select



	SUM	(CASE	WHEN	DISTINCT(A.account_no)	IS	NOT	NULL	AND
DISTINCT(B.account_no)	IS	NOT	NULL	THEN	1	ELSE	0)	AS
FOUND_IN_BOTH,

	SUM	(CASE	WHEN	DISTINCT(B.account_no)	is	NULL	THEN	1	ELSE	0)	AS
FOUND_ONLY_IN_ACC,

	SUM	(CASE	WHEN	DISTINCT(A.account_no)	is	NULL	THEN	1	ELSE	0)
AS	FOUND_ONLY_IN_TRN,

FROM

	ACC	A

FULL	OUTER	JOIN

	TRN	B

ON	A.account_no	=	B.account_no;

The	above	query	should	give	you	counts	of	data	available	in	both	systems;
imagine	the	result	looks	like	Table	10.1.

Table	10.1

Result	of	the	Query



FOUND_IN_BOTH FOUND_ONLY_IN_ACC FOUND_ONLY_IN_TRN

99000 100 50000



To	further	confirm	the	above	stats,	run	the	same	query	by	trimming	the	account
number.

	ON	TRIM(A.account_no)=TRIM(B.account_no)

If	stats	stay	same,	remove	trailing	‘0’

	ON	TRIM(TRIM	(‘0’	from	A.account_no))=TRIM(TRIM	(‘0’	from
B.account_no))

If	the	resultset	is	still	the	same,	browse	data	from	both	sides	and	see	if	missing
account_no	values	have	something	appended	in	the	start.	There	is	a	possibility
that	the	ACC	system	maintains	numeric	account	numbers	and	the	TRN	system
adds	branch	code	in	start.	Even	then	the	story	doesn’t	end	here;	you	keep	on
analyzing	columns	until	you	are	100%	sure	that	something	is	missing.

After	you	have	exhausted	your	options,	your	next	approach	should	be	to	identify
whether	there	is	an	issue	of	data	sample	completeness.	As	discussed	earlier,	the
master	data	sample	(account	data	in	this	case)	should	be	the	complete	dataset
from	the	source.

Run	the	below	query	to	see	if	you	received	all	historical	account	data.

SELECT	account_opening_date,	COUTN(*)

FROM	ACC

GROUP	BY	1

ORDER	BY	1



The	above	query	result	should	give	you	an	idea	how	far	back	in	history	account
data	is	available.	If	you	see	missing	dates,	then	you	can	ask	the	client:

1.	Is	there	a	legacy	system	before	the	ACC	source	system?	If	yes,	then	provide
the	complete	data	sample.

2.	Does	the	TRN	source	system	maintain	data	for	a	nonaccounts	source?	For
example,	the	TRN	system	might	also	maintain	credit	card	transactions,	which	we
won’t	find	in	ACC.	If	the	answer	is	yes,	then	the	client	should	provide	other
source	systems	data	and	a	business	rule	to	differentiate	between	two	datasets.

Intra-Source	System	Table-Level	Analysis

After	a	data	mapper	has	established	a	high-level	understanding	of	a	source
system,	he	or	she	should	start	looking	into	each	table	of	the	source	system.	The
data	mapper	should	look	for:

1.	Table	description:	Find	out	why	this	table	exists	in	the	source	and	what	it
logically	means.	What	kind	of	data	does	it	store?	Is	this	table	redundant	for
DWH,	or	will	it	serve	some	purpose	in	data	mapping?	Some	tables	in	the	source
system	can	have	a	special	purpose	such	as	history	handling;	the	data	mapper
needs	to	identify	how	source	data	will	be	transformed	into	information	using
data	mapping.

2.	Table	relationships:	Just	like	intersource	relationship	analysis,	run	SQL
queries	to	identify	or	verify	table	relationships	within	a	source.	If	a	data	mapper
is	lucky,	the	client	will	provide	the	logical	data	model	(LDM)	of	the	source,	but
if	not,	then	the	data	mapper	will	run	analysis	queries	to	create	a	physical	LDM	or
visualization.	Without	well-defined	relationships,	joins	defined	in	data	mapping
can	produce	wrong	results.

3.	Primary	key:	Whether	the	client	provided	the	primary	key	of	the	table	or	not,



the	data	mapper	should	use	SQL	queries	to	identify	or	verify	the	primary	key	of
the	table.

SELECT	C1,	count	(*)

FROM	tbl

GROUP	BY	C1

HAVING	COUNT	(*)	>1

If	the	above	query	returns	a	result,	then	it	means	that	the	C1	is	not	unique.	Next
you	need	to	identify	whether	the	table	has	a	composite	primary	key	or	the	data
sample	contains	multiple	extracts.	We	will	discuss	this	in	more	detail	in	the
uniqueness	section	of	this	chapter.

1.	Data	generation	scenarios:	Data	in	a	source	table	comes	from	applications,
and	we	need	to	understand	why	a	new	row	is	inserted	into	the	source	table.	In
telecom	organizations,	a	row	is	Call	Detail	Record	(CDR)	generated:	A
consumer	makes	a	call,	sends	Short	Message	Service	(SMS),	uses	the	Internet,
or	performs	other	activities.	There	could	be	activities	for	which	data	is
generated,	but	documentation	is	not	available.	For	example,	some	telecom
operators	store	missed	calls,	and	some	don’t;	some	operators	even	track	events
such	as	registering	of	consumer	connections	with	the	network.	Without	getting	a
complete	generation	scenarios	list,	we	cannot	understand	the	source	data
properly.

2.	Data	update	and	delete	scenarios:	In	most	OLTP	systems,	data	can	be	updated
or	even	deleted	(soft	or	hard).	What	are	these	scenarios?	Does	the	source	keep
slowly	changing	dimension	(SCD)	logic	for	updates?	Does	the	source	physically
delete	rows	or	mark	them	as	deleted?



Column-Level	Analysis

Because	columns	are	mapped	from	the	source	to	the	target,	it	is	very	important
to	analyze	column	values	from	both	a	logical	and	a	physical	perspective.

For	logical	understanding	of	the	column	values,	SME	can	provide	information
that	can	be	verified	from	the	data.	For	the	physical	demographics	of	a	column,
we	can	write	a	generic	query	that	will	generate	SQL	queries	for	all	columns	of
all	tables	of	the	source.	This	will	result	in	a	systematic	approach	toward	data
analysis	and	can	provide	an	error-free	resultset.

One	example	of	such	a	query	generator	is	given	below,	which	gives	the	null
count,	distinct	values,	maximum	length,	and	minimum	length.

SELECT	'select	'||''''||trim(Column_Name)||'	'||trim(column_type)||'
'||trim(length)||''''

			||	',sum(case	when	'||trim(Column_Name)||'	is	null	then	1	else	0	end)	as	"Null
Count"	'

			||	',count(distinct	'||trim(Column_Name)||')	as	"Distinct	Values"	'

			||'	,max(length(	'||trim(Column_Name)||'))	as	"Maximum	Length"	'

			||',min(length(	'||trim(Column_Name)||'))	as	"Minimum	Length"	'

			||'from	dbo.Table_Name;'	As	"Profile	Queries"

FROM	information_Schema

WHERE	database_name	='Source_DB_Name';

Apart	from	this	analysis,	you	can	run	other	queries	as	well	to	better	understand



the	column.	Some	time	looking	at	the	data	helps	identify	strange	and
nondocumented	values	of	the	column.	This	can	help	in	writing	a	better
transformation	rule	that	can	handle	all	type	of	anomalies.

For	all	columns	that	have	relationships	with	other	tables’	columns,	you	must	join
both	tables	and	identify	child	data	that	is	missing	in	the	parent	table.	This
missing	data	should	be	investigated	further	to	understand	why	this	data	is	present
in	the	table.



Uniqueness

The	most	common	problem	in	data	mapping	is	incorrect	primary	key	logic	of
source	data.	Sometimes	we	think	that	a	certain	column	or	columns	define	data
uniquely,	but	they	do	not,	resulting	in	logical	and	physical	errors.

From	a	logical	perspective,	the	wrong	primary	key	results	in	missing	or
duplicated	data	in	reports.	This	means	that	the	main	purpose	of	making	a	data
warehouse	is	not	fulfilled;	wrong	reports	mean	wrong	decisions	by	management.

When	doing	table-level	analysis,	the	first	thing	a	data	mapper	should	do	is
identify	columns	that	uniquely	define	the	table’s	data.	Such	columns	(or	a	single
column)	are	known	as	the	primary	key	of	the	table.	If	the	source	primary	key	is
correctly	identified,	then	the	resulting	data	mapping	will	serve	the	purpose.

Below	are	a	few	scenarios	in	which	primary	key	duplication	can	occur	and	their
solutions.

Full	Row	Duplicates

Full	row	duplicate	data	can	be	defined	as	a	row	or	tuple	that	has	the	same	value
for	every	column.	There	are	two	possibilities	of	a	full	row	duplicate	occurrence:

1.	The	source	contains	duplicates:	If	the	source	is	giving	full	row	duplicates,
then	we	need	to	identify	the	reason	behind	these	duplicates.	It	could	be	an	error
in	the	source	or	there	could	be	an	explanation	for	this	behavior	of	the	data.

At	first	glance,	of	a	full	row	duplicate	from	the	source,	we	can	classify	it	as	an
error	in	source,	but	there	may	be	business	logic	behind	such	duplicates,	and	data
mapping	should	handle	such	cases.



Let’s	create	a	hypothetical	case;	in	real	life	you,	will	come	across	such	issues.	A
grocery	shop	records	all	transactions	when	customers	check	out	using	old
software	that	was	meant	for	a	single	checkout	counter.	Over	a	period	of	time,	the
shop	owner	has	had	to	add	more	counters	as	the	customer	number	increases,	but
the	store	is	using	the	same	software.

Now	if	two	customers	buy	the	same	item	at	exactly	the	same	time,	then	we	will
get	a	full	row	duplicate	(Table	10.2).	If	the	LDM	of	the	data	warehouse	doesn’t
allow	these	duplicates,	then	you	need	to	request	a	modeler	to	change	the	primary
key	of	the	target	table	and	add	a	surrogate	counter.

This	new	counter	can	easily	be	generated	using	Rank/Row	Number	functions
available	in	most	DataBase	Management	Systems	(DBMSs).

SELECT	item,	time,	cost,	RANK()	OVER	(PARTITION	BY	item,	time,	cost
ORDER	BY	time)	as	Transaction_Number

FROM	tbl

On	the	other	hand,	the	client	can	also	confirm	that	these	full	row	duplicates	are
actually	an	error	in	the	source.	In	this	case,	either	the	client	can	take
responsibility	and	clean	the	source	or	a	rule	can	be	added	in	the	data	mapping	to
clean	the	data.

For	a	full	row	duplicate,	a	simple	DISTINCT	can	solve	the	problem:

SELECT	DISTINCT	item,	time,	cost

FROM	tbl



Or	a	group	by	statement:

SELECT	item,	time,	cost

FROM	tbl

Group	by	item,	time,	cost

2.	Duplicates	after	table	joins:	Sometimes	in	a	mapping,	we	join	multiple	source
tables	to	create	a	target	dataset.	If	we	identify	such	duplicates,	then	further
analysis	is	needed	to	identify	the	correct	primary	key	of	the	target	table	or	to
ignore	duplicate	rows.

Table	10.2

Full	Row	Duplicate	Example

Item Time Cost

Eggs 10/10/2015	12:25 2.56

Eggs 10/10/2015	12:25 2.56



Primary	Key	Duplicates

While	doing	data	analysis	of	the	table,	we	need	to	first	identify	the	primary	key
of	the	table.	If	the	client	has	already	provided	this	information,	then	we	need	to
confirm	the	primary	key	from	the	data.

Run	the	below	query	to	see	if	the	primary	key	is	duplicated.

SELECT	PK_columns,	Count(*)

FROM	tbl

GROUP	BY	PK_columns

HAVING	count(*)	>	1

The	above	query	will	group	by	all	data	for	the	same	primary	key	columns	and
return	a	result	if	it	finds	more	than	one	row	for	any	primary	key	(PK)	value.
Getting	a	result	for	the	above	query	means	that	either	our	PK	is	not	correct	or
there	is	explanation	for	this	duplication.

The	first	thing	you	need	to	do	is	to	browse	duplicated	data	and	see	if	you	can
identify	the	root	cause.

SELECT	A.*

From	tbl	as	A



INNER	JOIN

(

	SELECT	PK_Cols

	FROM

	(

		SELECT	PK_Cols,	Count(*)	as	C

		FROM	tbl

		Group	by	PK_Cols

		HAVING	C	>	1

)	ABC

)	B

ON	A.PK_Cols	=	B,PK_Cols

ORDER	BY	A.PK_Cols

Below	are	some	reasons	for	PK	duplicates	and	their	solutions	for	data	mapping.

Multiple	Extracts

If	the	data	sample	contains	multiple	extracts	of	the	same	data,	then	qualify	data
based	on	the	latest	extract	date	or	delete	old	extracts	from	the	table	for	analysis.
Deleting	data	is	not	a	wise	decision;	this	will	be	explained	in	the	next	scenario.



SELECT	*

FROM	tbl

QUALIFY	(RANK	()	OVER(PARTITION	BY	PK_Cols	ORDER	BY
Extract_Ts))	=1

Source	System	Updates

Sometimes	the	source	updates	data,	and	the	results	in	two	copies	of	the	same
row.	The	difference	can	be	in	any	nonprimary	key	column.	In	such	a	case,	the
data	mapper	has	to	see	how	the	data	will	be	transformed	in	the	target	table.	If	the
target	table	has	the	same	primary	key,	then	the	data	modeler	needs	to	confirm
that	the	latest	row	should	be	stored.	If	the	target	table	has	history	maintenance
columns,	then	these	are	not	duplicates;	in	fact,	they	are	useful	for	data
warehousing	because	the	history	will	be	maintained.	If	the	source	provides	a
TimeStamp	for	the	updated	record,	then	it	will	be	used	for	tracking	history	in
DWH;	if	the	source	doesn’t	provide	a	time	when	change	happened,	then	data
warehouse	extraction	time	will	be	used	for	maintaining	history.



History	Pattern	Analysis

Source	systems	maintain	history	and	might	have	implemented	special	logic
different	from	conventional	techniques.	Understanding	this	data	is	very
important	to	map	data	correctly;	the	data	in	the	source	might	contain	anomalies
or	might	have	some	business	reasoning.

Before	we	go	into	analysis	details,	let’s	first	look	at	types	of	history	handling
techniques.	These	are	usually	referred	to	as	SCD.	Different	types	of	techniques
are	explained	in	this	section.

In	a	data	warehouse,	to	report	historical	data,	there	is	a	requirement	for	pursuing
modifications	and	following	up	changes	in	dimension	attributes.	This	is	where
SCDs	are	used.	These	are	dimensions	that	gradually	change	with	time	instead	of
changing	systematically	on	a	uniform	program.	Executing	one	of	these	SCD
types	allows	the	users	to	allocate	the	appropriate	dimension’s	attribute	values
effectively	for	a	specific	date.

For	example,	a	company’s	database	may	contain	a	table	of	facts	that	holds	all	the
important	information	of	the	company’s	sales	record	and	employees.	The	table
would	be	linked	to	dimensions	by	using	foreign	keys.	Each	of	these	dimensions
would	hold	various	types	of	data	such	as	the	local	offices	of	all	the	employees.
However,	the	employees	are	often	transferred	from	one	office	to	a	different	one.
Also,	to	keep	track	of	past	sales,	it	is	necessary	to	report	when	a	salesperson	has
been	shifted	to	a	different	location.

Slowly	changing	dimension	management	is	therefore	required	to	deal	with	these
issues,	and	it	has	various	different	approaches	ranging	from	Type	0	to	Type	6.
Type	6	SCDs	are	occasionally	referred	to	as	hybrid	SCDs.

Type	0



Type	0	SCD	is	the	passive	method.	In	this	particular	method,	there	is	not	really
any	specific	action	conducted,	and	it	only	manages	dimensional	changes,	if	any.
Some	of	the	dimensional	values	may	remain	the	same	as	they	were	first	inserted;
for	others,	there	may	be	new	data	written	over	the	existing	ones.	Type	0	provides
limited	or	no	control	and	is	not	used	very	frequently	because	of	the	restrained
potential	put	into	resolving	the	dimensional	issues.

Type	1

Type	1	SCD	is	when	the	change	is	managed	by	overwriting	the	old	data	and
values.	Type	1	SCD	in	data	warehousing	is	implemented	when	no	history	is	kept
in	the	database.	The	current	dimension	data	is	simply	overwritten	by	the	changed
one.	This	method	of	correction	is	often	used	for	the	data	that	changes	constantly
with	time,	and	it	occurs	by	rectifying	any	mistakes	and	errors	in	the	data	(e.g.,
correcting	misspellings,	data	integration,	adjusting	spaces).	This	data	handling
approach	is	simple	and	easy	to	perpetuate,	but	it	has	the	disadvantage	of	not
keeping	a	track	of	any	historical	data.

A	Type	1	change	simply	overwrites	the	current	dimensional	attribute	with	the
new	information.	For	example,	if	you	want	to	change	a	customer’s	name,	the	old
value	is	discarded	and	the	new	value	is	reflected	in	the	table.	In	this	type	of
slowly	changing	dimension,	no	row	is	inserted	and	there	is	no	impact	on	the
primary	key	of	the	table.	We	simply	update	the	nonprimary	key	columns	of	the
table	with	new	value.

Although	‘Type	1’	is	a	type	of	slowly	changing	dimension,	we	do	not	maintain
history	of	change	and	only	provide	the	latest	data	(discarding	old	data	forever).
This	is	useful	when	we	don’t	have	a	requirement	to	maintain	a	history	of	change.
An	example	could	be	data	entry	errors:	an	operator	entering	the	wrong	name	of	a
customer	in	the	source	system	(Tables	10.3	and	10.4).



Table	10.3

Slowly	Changing	Dimension	Before	Change	in	Data

Product	Name State	Name Last	Updated

Sony	cyber-shot CA 4/9/2011



Table	10.4

Slowly	Changing	Dimension	After	Change	in	Data

Product	Name State	Name Last	Updated

Sony	cyber-shot NY 22/01/2014



In	Tables	10.3	and	10.4,	the	state	name	is	overwritten	because	the	supplier	would
have	relocated	the	headquarters	that	supplies	the	products.

Type	2

Type	2	SCD	is	when	any	change	is	reserved	by	using	an	integration	of	functional
dates	and	additional	rows	for	data	storage.	In	this	data	handling	approach,	all	of
the	historical	dimensional	changes	are	stored	in	the	database.	New	dimensional
data	is	constructed	between	the	old	records,	and	the	current	values	are	easily
acquired	with	the	history	being	clear.	The	fields	“effective	date”	and	“current
indicator”	are	frequently	used	in	this	dimension.	This	method	creates	numerous
diverse	records	for	a	given	natural	key	in	the	dimension	that	have	distinct
surrogate	keys,	and	infinite	history	is	stored	after	each	insert.	Type	2	SCD	allows
us	to	keep	a	track	of	the	historical	data	accurately.

Type	2	SCD	creates	another	record	and	leaves	the	old	record	intact.	Type	2	is	the
most	common	SCD	because	it	allows	you	to	track	historically	significant
attributes.	The	old	records	point	to	all	history	before	the	latest	change,	and	the
new	record	maintains	the	most	current	information.

In	this	type	of	slowly	changing	dimension,	we	insert	a	new	row	in	the	table	and
also	keep	the	old	row.	This	allows	business	to	view	both	rows	to	get	a
meaningful	view	of	the	change.	However,	data	warehouse	team	requires	design
and	development	efforts	to	create	the	logic.	Apart	from	development	effort,	this
type	of	SCD	uses	additional	disk	space	and	processing	power.

In	this	example,	we	initially	have	Table	10.5.	After	Rebecca	moved	from	Kansas
to	New	Mexico,	new	information	was	added	to	the	table	by	inserting	an
additional	row	(Table	10.6).



Table	10.5

Type	2	Slowly	Changing	Dimension	Before	Change	in	Data

Customer	Key Name State

1004 Rebecca Kansas



Table	10.6

Type	2	Slowly	Changing	Dimension	After	Change	in	Data

Customer	Key Name State

1004 Rebecca Kansas

1009 Rebecca New	Mexico



Type	3

Type	3	SCD	follows	up	the	historical	data	by	inserting	separate	individual
columns	for	each	sort	of	record.	Customarily,	in	Type	3	SCD,	the	current	and
previous	dimension	values	are	kept	in	the	database.	The	new	value	is	inserted
into	the	“current/new”	column	and	the	previous	in	the	“old/previous”	column.
However,	Type	3	SCD	being	confined	to	the	number	of	columns	for	the
deposition	of	history	makes	this	technique	of	a	limited	value.

Type	3	SCD	should	be	used	only	if	we	want	to	maintain	history	in	a	specific
manner	without	needing	the	time	when	change	happened.	Due	to	overhead	of
additional	columns	and	lack	of	time	window,	this	type	of	SCD	is	not
recommended	for	most	of	business	cases.	We	can	add	more	columns	for	each
change.	However,	this	adds	overhead	and	become	useless	when	the	number	of
changes	per	primary	key	goes	beyond	the	acceptable	threshold.	A	good	example
of	SCD	Type	3	could	be	a	Name	change	database,	where	only	the	old	and	new
names	are	stored.

In	contrast,	with	Type	2	SCD,	in	which	the	history	maintenance	and	storage	are
not	very	limited,	Type	3	SCD	has	restricted	history	storage	because	a	new
column	has	to	be	inserted	for	each	separate	version,	which	is	not	very	functional.

In	our	example,	see	Table	10.7.	To	assimilate	the	Type	3	SCD,	we	now	have	the
additional	modified	and	new	columns	shown	in	Table	10.8.

Table	10.7

Type	3	Slowly	Changing	Dimension	Original	Data	Without	Change



Customer	Key Name State

1004 Rebecca Kansas



Table	10.8

Type	3	Slowly	Changing	Dimension	After	Change	in	Data

Customer	Key Name Original	State Current	State Effective	Date

1004 Rebecca Kansas New	Mexico 17/06/2014



We	have	Type	1	and	Type	2	SCDs	as	the	central	and	overriding	techniques	for
responding	to	alterations	in	a	dimension;	however,	to	tackle	alternate	realities,	a
third	handling	technique	is	required.

This	type	of	slowly	changing	dimension	is	also	useful	for	alternate	reality
requirements	of	data	warehouse.	For	example,	today	we	categorize	a	pen	as	a
student	item,	but	tomorrow	we	may	also	categorize	it	as	a	gift	item.	Now	both	of
these	categorizations	are	important,	and	we	store	them	in	this	form.

Type	4

The	Type	4	SCD	approach	is	normally	called	using	“history	tables”	in	which	a
data	table	is	used	for	the	existing	information	and	a	subsidiary	table	is	used	for
recording	any	alterations.	The	idea	of	Type	4	SCD	is	to	stock	up	all	the	changes
in	a	separate	historical	data	record	table	for	each	separate	dimension.	The	main
dimension	table	holds	all	the	current	data—for	example,	tables	for	customer
history	(Tables	10.9	and	10.10).

Table	10.9

Type	4	Slowly	Changing	Dimension	Before	Change	in	Data



Customer	ID Customer	Name Customer	Type

1 Louis Corporate



Table	10.10

Type	4	Slowly	Changing	Dimension	After	Change	in	Data

Customer	ID Customer	Name Customer	Type Start	Date End	Date

1 Louise Retail 1/1/2010 21/07/2010

1 Louise Management 22/07/2010 17/05/2012

1 Louise Corporate 18/05/2012 31/12/9999



Type	6

Type	6	SCD	integrates	the	methodologies	of	Types	1,	2,	and	3	(1+2+3=6).	In	this
approach,	we	have	some	additional	columns	in	the	dimension	table.	Particularly,
Type	6	is	applied	if	you	want	to	maintain	history	completely.	Additional	columns
are	of	various	types,	such	as:

•	Current	type	to	maintain	the	current	value	of	the	attribute.	For	all	the	given
items,	records	of	history	have	the	same	existing	value.

•	Historical	type	is	for	keeping	the	historical	value	of	the	attribute.	For	a
particular	item	of	attribute,	all	of	the	history	records	have	the	same	value.

•	Start	date	maintains	date/time	when	the	attribute	value	became	effective.

•	End	date	maintains	the	date/time	when	the	attribute	value	was	no	longer
effective.

•	Current	flag	maintains	the	value	of	“Y”	for	a	record	that	is	active	or	“N”	for	all
old	records.

In	order	to	maintain	history	we	add	a	new	record	just	like	SCD	Type	2	and
overwrite	some	data	just	like	SCD	Type	1,	and	history	is	maintained	in	another
column	just	like	SCD	Type	3	(Table	10.11).

Table	10.11

Type	6	Slowly	Changing	Dimension	Example



Customer	ID Customer	Name Current	Type Historical	Type Start	Date End	Date

1 Louise A	Category C	Category 1/1/2010 11/10/2015

2 Louise A	Category B	Category 12/10/2015 14/01/2016

3 Louise A	Category A	Category 15/01/2016 31/12/9999



In	another	example,	we	have	the	supplier	table	initially	(Table	10.12).	The
supplier	table	starts	out	with	one	record	for	our	example	supplier	(Table	10.13).

Table	10.12

Type	6	Slowly	Changing	Dimension	Example	Source	Data

Supplier	Key Supplier	Code Supplier	Name Supplier	State

235 ABC Coca-Cola CA



Table	10.13

Type	6	Slowly	Changing	Dimension	Example	with	One	Record

Supplier	Key Supplier	Code Supplier	Name Current	State Historical	State Start	Data

235 ABC Coca-Cola CA CA



When	the	Coca-Cola	Supply	Company	moves	to	New	Mexico,	a	new	record	has
been	added	as	in	Type	2	processing	(Table	10.14).

Table	10.14

Type	6	Slowly	Changing	Dimension	Example	with	Two	Records

Supplier	Key Supplier	Code Supplier	Name Current	State Historical	State Start	Date

235 ABC Coca-Cola IL CA

235 ABC Coca-Cola IL IL



The	current	state	column	is	overwritten	with	the	latest	value	just	like	we	do	in
slowly	changing	dimension	Type	1,	although	old	information	is	not	lost	because
it	is	still	available	in	other	columns.	To	follow	up	with	the	alterations	made,	a
new	record	is	created	as	in	Type	2	processing,	and	the	history	is	stored	in	a
second	state	column	that	integrates	Type	3	processing	(Table	10.15).

Table	10.15

Type	6	Slowly	Changing	Dimension	Example	with	Three	Records

Supplier	Key Supplier	Code Supplier	Name Current	State Historical	State Start	Date

235 ABC Coca-Cola NY CA

236 ABC Coca-Cola NY IL

237 ABC Coca-Cola NY NY



Table	10.16	is	the	supplier	table	as	we	created	it	earlier	using	the	Type	6	hybrid
methodology.	Table	10.17	is	the	supplier	table	using	the	pure	Type	6
methodology.

Table	10.16

Type	6	Slowly	Changing	Dimension	Hybrid	Example

Supplier	Key Supplier	Code Supplier	Name Current	State Historical	State Start	Date

235 SUP-521081 Coca-Cola NY CA

236 SUP-521081 Coca-Cola NY IL

237 SUP-521081 Coca-Cola NY NY



Table	10.17

Pure	Type	6	Slowly	Changing	Dimension	Example

Supplier	Key Supplier	Code Supplier	Name Supplier	State Start	Date End	Date

456 SUP-521081 Coca-Cola CA 2/3/2005 20/12/2009

456 SUP-521081 Coca-Cola IL 22/12/2009 4/2/2012

456 SUP-521081 Coca-Cola NY 7/2/2012 1/1/2005



Temporal	Database

Some	applications	need	to	design	and	build	databases	in	which	information
changes	over	time.	Doing	so	without	a	temporal	table	support	is	possible	but
complex.

Consider	an	application	for	an	insurance	company	that	uses	a	policy	table	in
which	the	definition	looks	like	this:

CREATE	TABLE	POLICY(

POLICY_ID	INTEGER,

CUSTOMER_ID	INTEGER,

POLICY_TYPE	CHAR(2),

POLICY_DETAILS	CHAR(40)

)

UNIQUE	PRIMARY	INDEX(POLICY_ID);

Suppose	the	application	needs	to	record	when	rows	in	the	policy	table	became
valid.	Without	temporal	table	support,	one	approach	that	the	application	can	take
is	to	add	a	DATE	column	to	the	policy	table	called	Start_Date.	Suppose	the
application	also	needs	to	know	when	rows	in	the	table	are	no	longer	valid.
Another	DATE	column	called	End_Date	can	accomplish	this.



The	new	definition	of	the	table	looks	like	this:

CREATE	TABLE	POLICY(

POLICY_ID	INTEGER,

CUSTOMER_ID	INTEGER,

POLICY_TYPE	CHAR(2),

POLICY_DETAILS	CHAR(40)

START_DATE	DATE,

END_DATE	DATE

)

UNIQUE	PRIMARY	INDEX(POLICY_ID);

Several	complications	are	now	evident.	For	example,	if	a	customer	makes	a
change	to	his	or	her	policy	during	the	life	of	the	policy,	a	new	row	will	need	to
be	created	to	store	the	new	policy	conditions	that	are	in	effect	from	that	time
until	the	end	of	the	policy.	But	the	policy	conditions	before	the	change	are	also
likely	to	be	important	to	retain	for	historical	reasons.	The	original	row	represents
the	conditions	that	were	in	effect	for	the	beginning	portion	of	the	policy,	but	the
END_DATE	will	need	to	be	updated	to	reflect	when	the	policy	conditions	were
changed.

Additionally,	because	of	these	types	of	changes,	it	becomes	likely	that	more	than
one	row	will	now	have	the	same	value	for	Policy_ID,	so	the	primary	index	for
the	table	would	need	to	change.	All	modifications	to	the	table	must	now	consider
changing	the	Start_Date	and	End_Date	columns.	Queries	will	be	more
complicated.



The	mere	presence	of	a	DATE	column	in	a	table	does	not	make	the	table	a
temporal	table,	and	it	does	not	make	the	database	a	temporal	database.	A
temporal	database	must	record	the	time-varying	nature	of	the	information
managed	by	the	enterprise.

Rather	than	using	approaches	such	as	adding	DATE	columns	to	traditional
tables,	a	temporal	database	provides	support	to	effectively	create,	query,	and
modify	time-varying	tables	in	a	completely	different	manner.

There	are	two	types	of	times	in	the	context	of	temporal	databases.

Transaction	Time

Definition

Transaction	time	deals	with	the	time	when	a	certain	fact	was	stored	or	deleted
from	the	database.	Transaction	time	is	mostly	used	for	traceability	or	auditability
purposes	and	will	almost	always	be	present	in	regulatory	scenarios.

Limitations

•	Supplied	and	maintained	by	the	DBMS

•	Query	semantics	for	asking	questions	about	when	the	database	“knew”	the	fact

•	Can	only	be	one	per	table

•	Always	defined	as	NOT	NULL	Timestamp(6)	with	time	zone



•	Maintained	automatically	unless	nontemporal	capabilities	are	granted

Valid	Time

Definition

Valid	time	denotes	the	time	period	during	which	a	fact	is	true	with	respect	to	the
real	world	(e.g.,	on	January	1,	2010,	John	Smith’s	bank	account	balance	was
$10,000).	Valid	time	is	maintained	by	the	system	but	can	be	changed	by	the	user.
Valid	time	is	the	start	time	and	end	time	of	a	period	during	which	a	fact	was	true.

Limitations

•	Supplied	by	the	user	or	application

•	Maintained	by	the	database

•	Query	semantics	for	asking	questions	about	when	the	fact	was	valid	per	the
organization’s	definitions

•	Can	be	maintained	by	the	application	and	the	system

•	Can	only	be	one	per	table

•	Can	be	defined	as	date,	time,	or	timestamp

•	Can	be	NULL	or	NOT	NULL	(whole	column,	meaning	both	begin	and	end)



History	Data	Verification

If	the	source	claims	that	it	maintains	the	history	of	the	data,	then	the	data	mapper
must	confirm	that	the	time	window	in	the	source	is	defined	correctly	and	that	it
can	be	imported	to	the	data	warehouse	as	is.	If	there	are	issues	in	the	source	data,
then	data	warehouse	needs	to	re-create	history	or	mark	the	table	as	a	nonhistory
table.

Below	are	some	scenarios	that	must	be	tested	on	source	data	for	history	handling
verification.

--	Scenario	#1:	CHECKING	FOR	NULL	IN	START/END	DATE	COLUMN

--	This	test	will	identify	the	record(s),	having	NULLs	in	Start_Date	column.





--	Scenario	#2:	CHECKING	FOR	REVERSE	CASE

--	This	test	will	identify	the	record(s),	having	Start_Date	of	the	record	greater
than	the	End_Date.

--	End_Date_n	<	Start_Date_n





--	Scenario	#3:	CHECKING	RECORDS	WITH	HISTORY
OVERLAPS/COLLISION

--	This	test	will	bring	records	with	overlapping	or	collision	in	history	periods.

--	Collision:	End_Date_n	=	Start_Date_n+1

--	Overlap:	End_Date_n	>	Start_Date_n+1









--	Scenario	#4:	CHECKING	RECORDS	WITH	GAP

--	According	to	the	history	handling	rules,	there	should	not	be	gaps	in	the	history
period.

--	That	is,	when	a	record	is	closed,	the	next	record	should	be	active,	starting	right
at	the	time	and	date	the	previous	record	was	closed.

--	Gap:	End_Date_n	<	Start_Date_n+1	–	1





--	Scenario	#5:	CHECKING	MULTIPLE	OPEN	RECORDS

--	According	to	the	history	handling	rules,	there	should	not	be	two	open	records
at	the	same	time.

--	That	is,	two	records	with	same	Pk_Id	and	different	Start_Dates	but	both
records	have	End_Dates	as	nulls.





SQL	Tools

SQL	is	the	best	tool	for	data	mappers.	It	is	important	that	data	mappers	can	write
the	right	and	effective	SQL	code	for	data	analysis.	There	are	some	tricks	that
help	automate	data	analysis	and	turn	data	analysis	into	a	well-defined	process.
Below	we	discuss	some	features	of	SQL	that	data	mappers	should	use	for
analysis.

Automatic	Query	Generators

Writing	an	analysis	query	for	every	table	and	column	of	the	source	requires	lot
of	time	and	coding	effort.	To	make	the	process	faster	and	more	accurate,	we	can
use	SQL	to	generate	SQL.

Almost	all	database	systems	store	metadata	about	tables	and	columns.	We	can
use	this	metadata	to	generate	generic	queries	for	data	analysis.

If	we	are	looking	for	table-level	analysis,	we	can	check	whether	a	table	has	full
row	duplicates	or	not.	The	query	below	will	generate	SQL	statements	for	all
tables	of	the	database.

SELECT	‘SELECT’

UNION

SELECT

	Column_Name



	+’,	’

FROM	dbo.informationSchemaColumns

WHERE	Database_Name	=	‘any	source	db’

UNION

SELECT	‘Count	(*)	FROM	‘+	TABLENAME

+	‘	GROUP	BY	‘	FROM	dbo.informationSchemaTables

WHERE	Database_Name	=	‘any	source	db’

UNION

SELECT

	Column_Name

	+’,	’

FROM	dbo.informationSchemaColumns

WHERE	Database_Name	=	‘any	source	db’

UNION

SELECT	‘HAVING	COUNT(*)	>	1	;’

The	above	query	will	generate	SQL	code	for	every	table	but	will	not	run	as	it	is.
You	need	to	modify	some	parts	of	the	code.	In	some	cases,	the	result	may	be
unsorted,	resulting	in	wrong	or	unreadable	code.	For	this,	you	can	add	an	integer
value	in	each	select	statement	above	in	sequence	(or	use	column	sequence
numbers	in	metadata)	and	sort	the	resultset.	This	will	ensure	that	a	single	query
is	in	the	same	place	and	in	the	correct	sequence.

The	idea	here	is	to	reduce	the	effort	of	analyzing	every	table.	This	query	can	be



further	improved	by	adding	checks	for	the	last	column,	first	column,	sorting,	and
so	on.	This	one-time	effort	will	help	the	data	mapper	in	the	long	run	because	this
generator	can	be	reused	in	other	projects.

Similar	to	tables,	we	also	do	analysis	of	columns	to	identify	different	aspects.

Aggregate	Functions

Sometimes	we	need	aggregate	functions	for	data	analysis.	These	functions	can
be	used	for	verifying	individual	column	values	or	for	comparing	source	data
with	another	system	to	confirm	aggregated	values.

Different	database	systems	have	different	aggregate	functions,	but	all	provide
basic	ones.	Below	are	the	ones	that	are	most	commonly	used	during	data
analysis.

COUNT:	This	function	counts	the	number	of	occurrences	of	a	column(s).

SUM:	This	function	adds	all	values	of	the	column.

MIN:	This	function	returns	minimum	value	from	the	column.

MAX:	This	function	returns	maximum	value	from	the	column.

These	functions	are	usually	used	with	other	SQL	features	to	get	the	desired
resultset.	For	example,	if	you	want	to	see	how	much	sales	volume	was	generated
for	a	certain	type	of	product,	then	you	can	use	a	CASE	statement	with	the	SUM
function:

SUM

	(

		CASE	WHEN	Product_Type	=	1	THEN	Aount	ELSE	0	END



	)

COUNT(*)	gives	a	count	of	all	rows	in	a	table,	we	can	add	DISTINCT	on
column	to	get	count	of	unique	values	of	the	column

COUNT	(DISTINCT	employee_id)

Window	and	Rank	Functions

A	window	function	performs	a	calculation	across	a	set	of	table	rows	that	are
somehow	related	to	the	current	row.	This	is	comparable	to	the	type	of	calculation
that	can	be	done	with	an	aggregate	function.	But	unlike	regular	aggregate
functions,	use	of	a	window	function	does	not	cause	rows	to	become	grouped	into
a	single	output	row;	instead,	the	rows	retain	their	separate	identities.	Behind	the
scenes,	the	window	function	is	able	to	access	more	than	just	the	current	row	of
the	query	result.

In	the	code	example	below,	we	are	comparing	the	salary	of	a	single	employee
with	his	department’s	average.





In	the	code	sample	below,	we	are	ranking	each	employee	based	on	his/her	salary
within	his/her	department.	The	partition	clause	allows	us	to	define	the	area
within	which	ranking	is	done	and	order	by	clause	is	used	to	define	ranking
criteria.

SELECT	department,	employee,	monthly_Income,	rank()	OVER	(PARTITION
BY	department	ORDER	BY	monthly_Income	DESC)	FROM	Employee_Salary;

We	can	also	define	the	window	in	which	a	function	is	applied.	In	the	following
code	example	we	are	aggregating	all	data	before	the	current	value.

SELECT	Week_Number,

SUM()	over

(ORDER	BY	Week_Number	ROWS

			between	unbounded	preceding

					and	current	row

)	As	Running_Sum

FROM	Monthly_Sales;



Microsoft	Excel	and	Other	Tools

SQL	is	an	excellent	tool	for	data	analysis,	but	sometimes	it	is	easier	to	do
multiple	actions	on	small	datasets	in	a	Microsoft	Excel	file	rather	than	running
queries	again	and	again	on	the	database	server.	The	case	for	Excel	is	stronger
when	the	database	server	is	slow	and	takes	time	in	running	the	simple	queries.

Using	such	tools	helps	data	mappers	get	results	quickly	and	uses	most	of	the
time	on	devising	a	strategy	for	analysis.	Below	we	will	explain	some	of	the
features	that	are	commonly	used	during	the	data	mapping	process.

Remove	Duplicates

Removing	duplicates	from	data	in	SQL	requires	a	GROUP	BY	or	DISTINCT
function,	but	we	might	run	a	new	query	every	time	we	have	a	different
combination	of	columns.	Instead,	we	can	export	the	complete	dataset	to	an	Excel
file	and	use	Excel’s	“Remove	Duplicate”	function	for	this	purpose	(Figure	10.1).





Figure	10.1	Example	of	removing	duplicates.

Sort

By	sorting	data	in	different	orders	using	different	columns,	Excel	can	reduce	the
query	execution	time	on	the	database	server.	The	concept	is	similar	to	the	SQL
ORDER	BY	clause	(Figure	10.2).





Figure	10.2	Example	of	sorting	data.

We	can	sort	on	multiple	columns	and	on	different	options	(Figure	10.3).





Figure	10.3	Sorting	data	options	available	in	Excel.

Pivot	Tables

The	best	feature	Excel	provides	to	a	data	mapper	is	pivot	tables,	which	can	be
used	to	see	the	final	reports	from	a	business	user’s	perspective	within	seconds.
Pivot	tables	in	Excel	provide	a	drag-and-drop	option	to	view	aggregated	data
using	different	combinations	of	columns	(Figure	10.4).





Figure	10.4	Creating	a	pivot	table	in	Excel.

You	can	select	any	column	for	dimension	and	measure	(Figure	10.5).	The	result
is	displayed	in	a	pivot	table	immediately	(Figure	10.6).





Figure	10.5	Selecting	columns	as	measures	and	dimensions	in	Excel.





Figure	10.6	Pivot	table	result	in	Excel.

There	are	many	options	available	for	the	measure	part	of	the	pivot	table,	and	the
data	mapper	can	select	options	based	on	specific	requirements	(Figure	10.7).





Figure	10.7	Measure	(calculated	column)	options	in	Excel.



Chapter	11

Data	Quality



Abstract

Data	warehouse	is	becoming	common	and	almost	every	organization	with	good
amount	of	data	wants	to	get	benefit	of	their	data.	However	data	quality	issues
create	major	disappointment	for	business	users	when	end	reports	provide	in
correct	and	in	complete	view.

Keywords

data	quality;	data	cleansing;	data	completeness;	data	improvement

Data	warehousing	is	gaining	in	eminence	as	organizations	become	aware	of	the
benefits	of	decision-oriented	and	business	astuteness–oriented	databases.
However,	there	is	one	key	stumbling	block	to	the	rapid	development	and
implementation	of	quality	data	warehouses—that	of	warehouse	data	quality
issues	at	sundry	stages	of	data	warehousing.	Specifically,	quandaries	arise	in
populating	a	warehouse	with	quality	data.

The	end	purpose	of	data	warehouse	is	to	provide	business	users	with	a	tool	to
make	decisions.	If	the	information	in	these	reports	is	incorrect,	then	actions
taken	by	end	users	might	be	damaging	for	business	(Figure	11.1).





Figure	11.1	Interaction	with	data	warehouse	and	users.	CRM,	customer
relationship	management;	ERP,	enterprise	resource	planning;	ETL,	extract,

transform,	load;	HR,	human	resources.

The	cost	of	re-doing	data	warehouse	design	and	development	to	fix	data	quality
issues	can	be	the	deal	breaker,	where	organizations	lose	interest	in	such	systems.
Even	if	we	identify	data	quality	issues	at	a	later	stage	of	the	data	warehouse	life
cycle,	the	fixes	usually	are	done	for	a	particular	issue	and	do	not	address	all
aspects	of	data	quality.

The	underlying	issues	in	source	data	result	in	the	success	or	failure	of	data
warehouse.	Since	source	systems	have	been	storing	data	for	pre-data	warehouse
time,	it	is	not	possible	to	fix	issues	in	the	source	system.	It	is	therefore
ownership	of	data	warehouse	to	identify	and	fix	all	data	quality	issues.

Quality	of	data	is	directly	dependant	on	the	number	of	source	systems	and	their
geographical	distribution.	Loading	data	from	a	single	location	will	result	in
fewer	data	quality	issues;	however,	if	the	source	is	running	in	different	countries,
the	number	of	data	quality	issues	will	be	higher.	Consider	a	mobile	company’s
warranty	claim	data:	people	entering	data	into	the	system	can	be	working
anywhere	in	the	world.	In	some	places	the	operator	might	not	pay	attention	to
entering	correct	data	into	the	system,	as	his	or	her	focus	would	be	to	fix	the
device.	When	such	data	is	loaded	in	to	the	data	warehouse,	getting	a	single
picture	of	all	data	becomes	very	difficult	due	to	data	quality	issues,	and	it	is
almost	impossible	to	get	value	out	of	the	data	warehouse.

Before	the	computer	industry	produced	inexpensive	machines,	government
agencies	maintained	address	information	using	mainframes.	The	business	rules
were	applied	to	fix	misspellings	and	typographical	data	quality	issues.

This	data	was	shared	among	selected	services	organizations,	and	an	updated
version	was	maintained.	This	resulted	in	fewer	data	quality	errors,	and	anyone
accessing	this	data	could	use	it	without	worry.



What	is	Data	Quality?

Data	quality	can	be	defined	as	issues	in	source	data	that	reduce	the	chances	of
producing	correct	business	reports	for	end	users.	Data	quality	is	about	having
confidence	in	the	quality	of	the	data	that	you	record	and	the	data	that	you	use.
Data	can	take	many	forms	and	types	such	as	numbers,	symbols,	words,	images,
and	graphics	that,	once	processed,	become	useful	information	(Figure	11.3).

For	example,	in	the	health	care	field,	safe,	reliable	health	care	depends	on	access
to	and	utilization	of	quality	data.	A	user’s	personal	health	care	data	apprises	all
aspects	of	his	or	her	care,	including	referral,	assessment,	investigations,
diagnosis,	treatment	or	care	plans,	and	follow-up.	Correct	and	up-to-date	data	is
critical,	not	only	for	the	provision	of	high-quality	clinical	services	but	also	for
perpetuating	care,	research,	strategic	orchestrating,	and	management	of	health
and	long	term	care	accommodations.

If	the	data	is	of	poor	quality	overall,	it	results	in	a	difference	in	the	end	reports,
leading	to	a	lack	of	confidence	in	using	it.	This	means	that	opportunities	to
ameliorate	the	quality	of	the	data	will	be	disoriented,	ultimately	undermining
opportunities	for	accommodation	amendment.	Driving	amelioration	in	your	data
quality	will	ultimately	avail	you	and	your	colleagues	to	provide	a	better
accommodation	(Figure	11.2).





Figure	11.2	Data	quality	integration	in	the	data	life	cycle.





Figure	11.3	Data	flow	and	transformation.	ETL,	extract,	transform,	load;
ODS,	Operational	Data	Source;	OLAP,	Online	Analytical	Processing.

When	the	correct	data	is	available	in	a	timely	manner	to	decision	makers	who
can	confidently	rely	on	it,	the	data	is	considered	quality	data.



How	Do	You	Benefit	from	Data	Quality?

Let’s	take	the	example	of	the	health	care	sector,	where	people	distributing	health
care	need	access	to	quality	data	in	order	to	perform	their	duties.	The	benefits	of
accumulating	and	using	quality	data	include:

1.	Supporting	you	and	your	colleagues	to	distribute	safe,	high-quality	care	to
users

2.	Providing	a	precise	picture	of	care	and	good	documentary	evidence	of	your
work

3.	Helping	in	the	coordination	of	care	with	your	colleagues

4.	Ensuring	you	meet	licit	requisites	such	as	those	under	the	Data	Auspice	Acts

5.	Ensuring	you	meet	professional	standards

6.	Supporting	the	provision	of	data	for	clinical	and	audit	initiatives

7.	Supporting	decision	making	within	your	organization	and	nationally

8.	Providing	data	for	health	care	research,	which	may	lead	to	improved	outcomes
for	your	users	or	better	ways	of	working	for	you

It	is	paramount	to	understand	that	poor	data	quality	has	a	substantial	impact	on
the	safety	of	users.	Therefore,	data	quality	is	the	responsibility	of	all	staff	(Figure
11.4).





Figure	11.4	The	data	quality	life	cycle.



Factors	Determining	Data	Quality

Loading	source	data	and	making	reports	do	not	mean	that	business	users	can
always	make	decisions	and	perform	actions	smoothly.	Dealing	with	missing
data,	data	with	errors,	or	data	that	is	out	of	context	is	another	definition	of	data
quality.	A	broader	definition	is	that	data	quality	is	achieved	when	an	organization
uses	data	that	is	comprehensive,	understandable,	consistent,	pertinent,	and
timely.

The	first	step	toward	data	quality	improvement	is	to	understand	the	dimensions
of	data	quality.	Source	data	has	to	meet	criteria	of	data	quality	to	ensure	that	it	is
effective	and	interpretable.	In	other	words,	we	can	define	high-quality	data	can
be	defined	as	data	that	satisfy	all	dimensions	of	data	quality.

Many	definitions	are	available	for	data	quality,	and	there	has	been	considerable
effort	made	to	identify	its	dimensions.	The	main	point	when	defining	the
dimensions	of	data	quality	is	to	keep	in	mind	that	high-quality	data	should	be
available	to	business	users	for	making	decisions.

Below	we	discuss	globally	acceptable	dimensions	of	data	related	to	data
warehousing	(Figure	11.5).





Figure	11.5	Factors	determining	data	quality.

Accurate	Data

Data	that	uniquely	defines	its	logical	concept	along	with	detailed	data	can	be
defined	as	accurate	data.

Examples	include:

•	Identification	details	are	correct	and	uniquely	identify	the	service	user.	For
example,	the	address	on	the	record	is	correct.

•	All	pages	in	the	health	or	social	care	record	are	for	the	same	person.

•	The	vital	signs	are	correctly	transcribed	from	the	measurement	monitor	to	the
health	care	record.

•	The	abstracted	data	for	statistics	and	registries	meets	relevant	standards	and	has
been	verified	for	accuracy.

•	When	predetermined	coding	standards	exist,	it	is	vital	that	all	codes	used
conform	to	these	standards.

•	Each	data	field	is	defined	so	that	it	is	clear	what	type	of	data	is	to	be	recorded
in	a	particular	field.	For	example,	date	of	birth	is	in	the	format	dd/mm/yyyy
(e.g.,	22/10/2012).

Complete	Data



Complete	data	has	the	those	items	required	to	measure	the	intended	activity	or
event.

Examples	include:

•	All	interactions	with	a	service	are	documented	fully	in	the	health	or	social	care
record.

•	Abbreviations	should	be	avoided	if	possible	and	only	used	when	approved	by
the	organization.

•	Vague	phrases	such	as	“usual	day”	and	relative	expressions	such	as	“improved”
are	avoided.

•	The	prescription	and	dispensing	sections	of	the	health	or	social	care	record
include	the	name	of	any	prescribed	drug	printed	with	the	dosage,	route,	and	time
of	administration	clearly	documented.

•	International	units	of	measurement	are	clearly	documented	on	all	laboratory
results.

Legible	Data

Legible	data	is	data	that	the	intended	users	will	find	easy	to	read	and	understand.

Examples	include:

•	Care	is	taken	to	ensure	that	handwritten	documents	such	as	prescriptions,



discharge	summaries,	care	center	daily	logs,	and	transfer	or	referral	letters	use
text	that	is	clear	and	readable.

•	Handwritten	notes	are	completed	in	permanent	ink	and	are	clear,	concise,	and
easy	to	read	and	understand.

•	In	all	health	and	social	care	records,	both	manual	and	electronic,	only	codes,
symbols,	or	abbreviations	approved	by	the	organization	are	used.

Relevant	Data

Relevant	data	meets	the	needs	of	the	information	users.

Examples	include:

•	A	current	contact	telephone	number	and	address	are	provided	to	the	public
health	nurse	when	a	mother	and	baby	are	discharged	from	a	maternity	hospital	or
maternity	unit.

•	Foster	care	records	include	whether	the	children	are	in	voluntary	care	or
statutory	care,	so	that	consent	can	be	obtained	from	the	appropriate	person	for
issues	such	as	receiving	vaccinations.

•	The	discharge	summary	from	a	hospital	to	a	family	doctor	contains	all	relevant
information,	such	as	diagnoses	and	procedures	carried	out,	to	ensure	continuity
of	care.

•	A	referral	letter	from	a	family	doctor	to	a	hospital	specialist	contains	the	data
required	for	the	referral	to	be	appropriately	assessed	and	processed.



Reliable	Data

Reliable	data	is	collected	consistently	over	time	and	reflects	the	true	facts.

Examples	include:

•	Data	such	as	date	of	birth	are	recorded	on	the	first	sheet	and	all	subsequent
sheets	of	the	health	care	record.

•	The	correct	name	and	hospital	number	of	the	individual	is	recorded	on	all	paper
forms	within	the	health	care	record	at	the	point	of	care	or	service.

•	Aftercare	plans	for	children	in	foster	care	approaching	18	years	of	age	are
completed	consistently	for	all	children.

Timely	Data

In	today’s	changing	world,	getting	information	at	the	right	time	is	crucial	in
making	timely	decisions.	For	some	organizations,	data	warehouse	is	a	tool	to
predict	future	patterns,	and	if	we	cannot	provide	information	at	the	right	time,
then	business	decisions	can	be	wrong.

Examples	include:



•	An	individual’s	identifying	information	is	recorded	at	the	time	of	first
attendance	and	is	readily	available	to	identify	the	individual	at	any	given	time
during	his	or	her	care	and	treatment.

•	For	hospital	patients,	all	interactions	are	documented	at	the	point	of	care	or	as
soon	as	possible	afterward.

•	On	discharge	or	the	death	of	a	patient	in	hospital,	his	or	her	health	care	records
are	processed	and	completed	within	a	specified	time	frame.

•	Reports	and	data	for	national	registries	and	databases	are	validated	and	are
available	within	a	specified	time	frame.

•	The	end-of-life	preferences	of	residents	in	nursing	homes	are	clearly
documented	and	available	when	urgent	decisions	are	required	in	relation	to	end-
of-life	care.

Valid	Data

Data	that	is	needed	for	its	intended	purpose	is	valid	data.	It	is	loaded	from	the
source	and	is	measured	on	correct	and	meaningful	parameters.

Examples	include:

•	Unique	numbers	that	are	used	to	identify	the	service	user	are	validated	to
ensure	the	correct	number	is	assigned	to	the	correct	service	user.

•	For	hospital	patients,	the	date	of	admission	to	the	hospital	must	be	the	same	as
or	earlier	than	the	date	of	discharge	from	the	facility.

•	For	hospital	patients,	validity	checks	are	carried	out	on	vital	statistics	recorded
such	as	body	temperature	and	blood	pressure	to	ensure	that	they	fall	within	valid



ranges.



Stages	of	Data	Warehousing	Susceptible	to	Data
Quality	Problems

In	this	section	we	will	list	stages	of	the	data	warehouse	life	cycle,	where	we
encounter	data	quality	issues.

•	Source	system

•	Analysis	and	profiling	stage

•	Data	extraction	from	the	source,	loading	in	staging	and	during	transformation

•	Designing	the	database

Data	quality	issues	can	arise	during	maintenance,	insertion,	processing,
extraction,	transformation,	receiving,	and	loading.	There	are	many	processes	that
bring	data	into	the	data	warehouse;	some	of	these	have	an	impact	on	the	quality
of	data.	While	we	identify	and	rectify	most	of	data	quality	issues,	some	of	them
will	still	exist.	Such	scenarios	should	be	reported	to	the	business	users	so	that
actions	can	be	taken	if	it	is	not	acceptable.	For	example,	if	the	source	system
does	not	provide	the	bank	account	number	of	a	financial	transaction,	there	is
nothing	that	data	warehouse	can	do	to	fix	this.	Client	should	have	a	clear
understanding	of	such	issues.

There	are	many	ways	we	can	face	data	quality	problems.	Below	are	some
common	ones:

•	Processes	for	handling	data	in	source

•	Processes	that	govern	data	entry	and	their	implementation

•	Migration	errors	when	loading	data	from	one	system	to	another

•	Data	that	is	not	in	control	of	client—i.e.,	third-party	data



The	main	point	here	is	that	we	can	face	quality	issues	at	any	stage	of	data	flow
from	source	system	to	business	reports.	Figure	11.6	shows	data	warehouse	stages
where	data	quality	issues	can	arise.





Figure	11.6	Stages	of	data	warehousing	susceptible	to	data	quality	problems.



Classification	of	Data	Quality	Issues

Data	analysts	identify	the	root	cause	of	data	quality	issues	and	make	design
decisions	to	address	such	problems.	In	this	section	we	will	identify	areas	on
which	analysts	need	to	focus.

Data	Quality	Issues	at	Data	Sources

A	leading	cause	of	data	warehousing	and	business	intelligence	project	failure	is
erroneous	or	poor	quality	source	data.	Eventually,	data	in	the	data	warehouse	is
collected	from	various	sources	as	depicted	later.	The	source	system	consists	of
all	of	those	“transaction/production”	raw	data	providers	from	which	the	details
are	pulled	to	make	it	useful	for	data	warehousing.	All	of	these	source	systems
have	their	own	methods	of	storing	data.	Some	of	the	data	sources	are
cooperative,	and	some	are	uncooperative.	Because	of	this	diversity,	several
reasons	are	present	that	may	contribute	to	data	quality	problems	if	they	are	not
taken	care	of.	A	source	that	offers	any	kind	of	unsecured	access	can	become
unreliable,	ultimately	contributing	to	poor	data	quality.

Data	sources	can	have	many	issues	associated	with	data	quality.	For	example,
legacy	data	sources	do	not	maintain	metadata	to	describe	them.	Sources	also
receive	data	from	different	channels—i.e.,	human	data	entry,	manual	files,	or
through	another	database.	Since	the	requirement	in	sources	is	to	track	a
transaction/event,	data	quality	is	acceptable	for	them	as	it	does	not	impact
business.	However,	when	this	data	is	loaded	to	a	data	warehouse,	we	need	to
identify	and	fix	such	issues.

Another	example	is	file-based	sources	where	multiple	files	are	combined	to
generate	a	single	file,	resulting	in	data	quality	issues.	Table	11.1	summarizes	the
possible	causes	of	data	quality	issues	at	the	source	stage	of	data	warehousing



(Figure	11.7).

Table	11.1

Causes	of	Data	Quality	Problems	in	Source	Systems

Data	source	inclusion	that	have	no	value	for	business

The	closer	we	get	to	source	for	extraction,	the	more	data	quality	issues	increase

Lack	of	information	about	intra-source	system	connection

An	inability	to	cope	with	aging	data

Varying	timeliness	of	data	sources

Lack	of	validation	routines	at	sources

Unexpected	changes	in	source	systems

Multiple	data	sources	generating	semantic	heterogeneity

Use	of	different	representation	formats	in	data	sources

The	presence	of	duplicate	records	of	the	same	data	in	multiple	sources







Figure	11.7	Data	quality	problems	in	the	source	system.	CSF,	Comma
Separated	Values;	ODS,	Operational	Data	Source.

Data	Quality	Issues	During	the	Data	Profiling	Stage

When	possible	candidate	data	sources	are	identified	and	finalized,	data	profiling
comes	into	play	immediately.	Data	profiling	is	the	examination	and	assessment
of	the	source	systems’	data	quality,	integrity,	and	consistency,	sometimes
additionally	called	source	systems	analysis.	Data	profiling	is	fundamental	yet	is
often	ignored	or	given	less	attention;	as	result,	the	quality	of	the	data	in	the
warehouse	is	compromised.	At	the	commencement	of	a	data	warehouse	project,
as	soon	as	a	candidate	data	source	is	identified,	data	profiling	assessment	should
be	made	to	provide	a	“go”	or	“no-go”	decision	about	proceeding	with	the
project.	Table	11.2	depicts	the	possible	causes	of	data	quality	degradation	at	the
data	profiling	stage	of	data	warehousing.

Table	11.2

Data	Quality	Issues	During	the	Data	Profiling	Stage

Insufficient	data	profiling	of	data	sources

Manually	derived	information	about	the	data	contents	in	operational	systems



Inappropriate	selection	of	the	automated	profiling	tool

Insufficient	data	content	analysis	against	external	reference	data

Lack	of	analysis	of	source	data	structures

Lack	of	analysis	of	fields	in	each	source	system’s	table

Lack	of	source	system’s	inter-table	relationships

Lack	of	data	available	for	analysis	to	get	full	picture

Lack	of	analysis	of	aggregated	data	on	source	system

Lack	of	documentation	during	profiling	stage

Data	Quality	Issues	During	the	Extract,	Transform,
Load	Phase

Data	cleansing	is	required	when	data	is	extracted	from	the	source	system,	loaded
into	staging	tables	or	transformed	to	the	target	data	warehouse	area.	These
improvements	are	usually	executed	to	improve	precision	of	the	data	warehouse.

Once	data	is	extracted	from	the	source	system,	further	data	quality
improvements	are	done	in	the	staging	area.	This	area,	along	with	ETL	(Extract,
Transform,	Load),	are	most	critical	stages	of	a	data	warehouse	and	the	data
mapper’s	maximum	focus	should	be	to	fix	all	data	quality	issues	here.	This	stage
is	perfect	for	identifying	issues	and	tracking	them.	Some	reasons	for	data	quality
issues	during	this	phase	are	listed	in	Table	11.3.



Table	11.3

Data	Quality	Issues	During	the	Extract,	Transform,	Load	Stage

Misinterpreting	or	wrong	implementation	of	the	SCD	strategy	in	the	ETL	phase

Type	of	staging	area	(relational	or	nonrelational)

Different	business	rules	of	various	data	sources

Business	rules	lacking	currency

The	inability	to	schedule	extracts	by	time,	interval,	or	event

No	analysis	of	source	system’s	changes

Multiple	extracts	in	staging	area	or	other	data	refresh	issues

Staging	area’s	permanent	deletion	of	data

Removing	referential	integrity	constraints	in	staging	area

Lack	of	reflection	of	rules	established	for	data	cleaning	into	the	metadata

ETL,	extract,	transform,	load;	SCD,	slowly	changing	dimension.

Data	Quality	Issues	During	Data	Modeling



Usefulness	of	reporting	information	is	the	main	goal	of	a	data	warehouse	team.
Below	are	three	things	that	impact	information:

•	Overall	data	quality

•	Applications	that	are	running	the	data	warehouse

•	Data	model	quality

Special	attention	should	be	give	to	the	data	model	of	the	warehouse	as	data	will
be	stored	in	it.	Any	issue	with	the	design	will	have	a	huge	impact	on	final
reporting.	Some	of	the	issues	are	gradually	transmuting	dimensions,	rapidly
transmuting	dimensions,	and	multivalued	dimensions.

A	flawed	schema	impacts	negatively	on	information	quality.	Table	11.4	depicts
some	of	the	most	consequential	causes	of	data	quality	issues	during	the	data
warehouse	schema	designing	stage.

Table	11.4

Data	Quality	Issues	in	Schema	Design

Incomplete	or	wrong	requirement	analysis	of	the	project,	leading	to	poor	schema
design

Lack	of	currency	in	business	rules,	causing	poor	requirement	analysis,	leading	to
poor	schema	design

Choice	of	the	dimensional	modeling	(STAR,	SNOWFLAKE,	FACT



CONSTELLATION)	schema

Late	identification	of	SCDs

Late-arriving	dimensions

Improper	selection	of	record	granularity,	leading	to	poor	schema	design

Wrong	primary	keys	of	facts	or	dimension	tables

Inability	to	support	database	schema	refactoring

Multivalued	dimensions

Lack	of	sufficient	validation	and	integrity	rules	in	the	schema

SCD,	slowly	changing	dimension.



How	Can	You	Assess	Data	Quality?

To	improve	data	quality,	you	first	need	to	quantify	the	data	quality	to	identify
what	needs	to	be	amended.	Efforts	to	improve	systems	or	processes	must	be
driven	by	reliable	data	that	not	only	sanctions	deficiencies	to	be	accurately
identified	but	also	prioritizes	quality	amelioration	initiatives	and	enables
objective	assessment	of	whether	change	and	amelioration	have	occurred.
Organizations	should	have	a	dedicated	staff	member	who	assesses	the	overall
data	quality	on	a	customary	substructure.

Assessing	data	quality	will	allow	you	to:

•	Establish	a	baseline	for	data	quality	and	identify	any	areas	for	amelioration.

•	Demonstrate	which	areas	have	been	amended	or	improved.

•	Assess	the	impact	of	any	transmutations	in	practice,	policies,	or	procedures	on
data	quality.

•	Improve	confidence	in	the	data.

The	simplest	way	to	assess	data	quality	is	to	review	a	representative	sample	of
data	to	ensure	that:

•	It	has	been	recorded	in	keeping	with	policies	and	procedures.

•	Mandatory	values	in	a	dataset	have	been	included.

•	It	is	within	acceptable	ranges	(if	quantitative).

•	It	adheres	to	the	seven	data	quality	dimensions	as	outlined	in	this	chapter.

When	developing	a	data	quality	assessment	plan,	certain	initial	steps	should	be
taken,	which	include:

•	Assigning	responsibility:	A	categorical	staff	member	should	be	assigned	to



audit	aspects	of	data	contained	in	the	service	records

•	Identifying	how	you	might	measure	paramount	aspects	of	data	quality	such	as
precision,	completeness,	legibility,	relevance	or	pertinence,	reliability,
timeliness,	and	validity

•	Determining	indicators	of	data	quality	for	each	data	item	(e.g.,	the	percentage
of	the	completeness	of	the	vocation	field	in	service	records)

•	Identifying	the	most	appropriate	or	congruous	method	for	quantifying	the
indicators	(e.g.,	by	user	questionnaire	or	by	statistical	analysis	of	the	data)

•	Using	the	developed	indicators	or	designators	of	data	quality	to	engender	an
organized	method	for	collecting	and	reviewing	data.

After	the	initial	steps	are	taken,	the	findings	of	data	quality	assessments	should
be	shared	with	all	appropriate	staff,	including	senior	management	and	all	those
involved	in	the	amassment	of	data.	Any	needed	actions	to	improve	the	data
quality	should	be	identified.



What	Can	You	Do	to	Make	Data	Quality	a	Success?

The	collection	and	use	of	quality	data	by	staff	is	an	integral	part	of	practice	to
ensure	safe	and	effective	service	delivery	to	the	customer.	Staff	members	have	a
professional	obligation	to	maintain	documentation	that	is	clear,	concise,	and
comprehensive	and	to	keep	an	accurate	and	true	record	of	service.	The	same
principles	should	apply	to	all	other	staff	recording	data	in	electronic	or	paper
formats.

When	you	are	recording	data,	it	should:

•	Be	a	clear,	concise,	factual,	full	record	of	service.

•	Comply	with	data	definitions	when	these	exist	and	only	use	approved
abbreviations.

•	Be	legible,	sempiternal,	service	user	focused,	and	nonjudgmental.

•	Include	the	date	and	time	of	service	or	event	(including	recording	changes	or
addendums).

•	Avoid	duplication	of	data	that	already	exists.

•	Be	timely	and	complete	as	near	as	possible	to	the	episode	of	service	or	event.

•	Identify	the	details	of	the	person	who	provided	the	service	and	the	person	who
documented	the	accommodation	or	event.

•	Minimize	transcription	of	data.

You	are	personally	accountable	and	responsible	for	the	data	that	you	record,	and
you	can	have	a	direct	effect	on	data	quality.



Chapter	12

Data	Mapping	Scenarios



Abstract

After	understanding	source	data,	writing	the	transformation	rule	is	a	simple
process	in	90%	of	the	time.	However,	there	can	be	cases	when	special	rules	and
handling	are	required.	This	chapter	explains	mapping	scenarios	that	can	be	used
to	understand	complex	issues	and	their	solutions.

Keywords

history	handling;	data	consolidation;	mapping	priority;	master	data	management;
data	integration;	data	quality	improvement;	data	warehouse	performance
improvement;	denormalized	mapping;	aggregate;	facts;	dimensions;	recursive
query

So	far	we	have	discussed	data	mapping	prerequisites,	general	definitions,	and
formats.	In	this	chapter,	we	will	discuss	in	detail	different	mapping	scenarios	and
provide	different	options	available	to	data	mappers.	We	will	discuss	the	best
possible	solution	to	the	problem	and	create	a	mapping	from	the	source	to	the
target.	In	each	scenario,	we	will	provide	sample	data,	a	logical	data	model
(LDM)	table,	and	other	details	required	for	the	mapping.



Data	Transformation	(Normalized	Model)

Let’s	start	with	an	example	that	covers	most	of	the	basic	transformations.

Source

There	are	three	sources	in	this	example,	all	providing	data	for	the	party	target
table.

The	first	source	is	the	Employee_Detail	table	from	the	human	resources	(HR)
source	system.	The	second	source	is	the	Monthly_Salary	table	from	the	finance
source	system	containing	employee	salary	information	for	every	month.	The
third	is	the	customer	table	from	the	sales	department’s	database.	This	table
contains	information	about	the	customers	to	which	the	company	provides
services	and	products.

Because	in	LDM	we	generalize,	we	store	all	kind	of	parties	in	the	PARTY	table.
The	first	two	sources	provide	data	for	the	same	party	(i.e.,	employee),	and	the
third	source	provides	data	for	customers.

Target

In	this	example,	the	target	table	is	party	(Figure	12.1).



Although	we	don’t	have	the	actual	start	date	of	an	employee,	we	do	have	the
salary	date.	This	is	the	best	we	can	do	with	the	available	data.





Figure	12.1	Target	table	for	the	data	transformation	scenario.

Mapping

Because	there	are	multiple	sources	for	this	table,	we	have	to	assign	priority	to
each	mapping.	The	priority	can	be	defined	and	implemented	in	multiple	ways.
We	will	use	a	simple	method	for	defining	priority	whereby	a	numeric	value	will
be	multiplied	by	another	value	known	as	a	multiplier	value,	which	will	separate
for	each	mapping.	This	method	requires	a	metadata	table	in	which	we	will	store
target	table	name,	source	table	ID	(which	is	unique	for	each	table	in	the
Enterprise	Data	Warehouse	[EDW]),	record	ID,	and	a	multiplier	value.	Later	on,
this	metadata	table	will	be	used	in	the	extract,	transform,	load	(ETL)	process
when	applying	data	from	the	load-ready	area	to	the	target	EDW	table.

The	priority	of	each	mapping	is	defined	based	on	input	received	from	the	source,
data	analysis	carried	out,	and	input	received	from	the	subject	matter	expert
(SME).

In	this	particular	example,	HR	data	is	being	used.	The	client	information
technology	(IT)	team	has	stated	that	this	data	will	contain	values	for	almost	all
columns,	finance	and	sales	data,	and	some	information	about	party.	In	this
example,	the	multiplier	value	for	the	HR	source	table	is	taken	as	100;	for	the
finance	table,	it	is	90;	and	for	the	sales	table,	it	is	100.	Note	that	HR	and	finance
are	providing	data	for	the	same	party,	but	sales	is	providing	data	for	a	logically
different	party.	The	primary	key	of	the	table	contains	a	Party_Type	column,
which	helps	in	distinguishing	employees	from	customers	and	other	types	of
parties.

It	is	possible	that	in	the	future,	a	new	source	might	provide	better	data	than
finance	but	not	as	complete	as	HR.	In	that	case,	a	multiplier	value	of	95	can	be
assigned	to	that	source	table.	Thus,	it	can	be	seen	that	the	range	of	values	used
for	the	source	table	multiplier	is	such	that	it	provides	flexibility	for	inclusion	of
future	sources	in	the	priority	list	for	the	party	table.



For	better	readability	of	the	mapping	(Table	12.1),	only	important	columns	of	the
mapping	have	been	used.

Table	12.1

Data	Mapping	for	the	Data	Transformation	Scenario

Target	Table Target	Column

Party

If	there	are	multiple	rows	for	one	Employee_Id	then	select	latest	based	on	extract	timestamp

Party Party_Id

Party Party_Type

Party Party_First_Name

Party Party_Last_Name

Party Party_Desc

Party Party_Date_Of_Birth

Party Party_Start_Dttm



Party Party_Subtype

Party Party_Department

Party

If	there	are	multiple	rows	for	one	Employee_Id	then	select	latest	based	on	extract	timestamp

Party Party_Id

Party Party_Type

Party Party_First_Name

Party Party_Last_Name

Party Party_Desc

Party Party_Date_Of_Birth

Party Party_Start_Dttm

Party Party_Subtype

Party Party_Department

Party

If	there	are	multiple	rows	for	one	Customer_Id	then	select	latest	based	on	extract	timestamp

Party Party_Id

Party Party_Type

Party Party_First_Name

Party Party_Last_Name



Party Party_Desc

Name

Party Party_Date_Of_Birth

Party Party_Start_Dttm

Party Party_Subtype

Party Party_Department



*TRN	CAT,	Transformation	Category.

We	have	defined	priority	of	the	mapping	in	the	header	rule	area	along	with	table-
level	rules.	Note	that	we	have	also	populated	an	indicator	in	the	header	row,
giving	information	about	the	master	or	secondary	source.	A	plus	sign	represents
the	master	source	for	this	information,	and	a	minus	sign	represents	sources	that
don’t	provide	complete	data	for	logical	entity.	This	information	helps	future
SMEs	to	change	priority	or	importance	of	the	data	from	a	source.



Data	Joining	(Normalized	Model)

Data	joining	between	source	tables	creates	complexity	in	data	mappings.	The
main	idea	is	to	use	data	from	different	tables	and	store	it	in	one	target	table.	This
is	necessary	when:

1.	Source	tables	have	mutually	exclusive	information.

2.	A	lookup	is	required	in	another	table	to	get	information.

3.	The	target	table	is	denormalized.

4.	Data	quality	improvement	is	required	by	using	another	table’s	data.

5.	Lookup	in	the	target	table	is	required.

6.	The	surrogate	key	lookup	is	required.

Data	joining	should	be	explained	in	detail,	giving	information	about	columns	to
join	on,	type	of	join	(e.g.,	left,	inner),	missing	data	conditions,	and	data	loading
time.

If	two	staging	tables	are	joined,	then	they	must	be	in	synchronization	with
respect	to	the	source	(i.e.,	at	the	time	of	mapping	execution,	both	tables	should
have	the	required	information).	The	rules	must	also	consider	delayed	loading
(e.g.,	if	data	loading	is	done	for	four	extracts,	then	what	rule	will	be	applied	if
there	will	be	duplicates	in	joining	tables?).

Source

Consider	the	following	two	tables	in	staging:



1.	CONSUMER_BILL	containing	information	about	a	consumer’s	bill

2.	CONSUMER_BILL_DUE_DATE	containing	information	about	the	date
when	the	consumer’s	bill	is	due

Target

The	target	of	this	source	data	is	the	INVOICE	table	containing	columns	shown
in	Figure	12.2.





Figure	12.2	Target	table	for	the	data	joining	scenario.

Mapping

First	and	foremost,	mapping	is	done	to	ensure	that	both	source	tables	contain	the
required	information.	If	not,	then	a	special	rule	needs	to	be	applied	to	handle	this
issue	(Table	12.2).

Table	12.2

Data	Mapping	for	the	Data	Joining	Scenario

Target	Table Target	Column Record	Id Source	Table

INVOICE CON001 CONSUMER_BILL

CONSUMER_BILL_DUE_DATE

INVOICE Invoice	Id CON001 CONSUMER_BILL

INVOICE Invoice	Date CON001 CONSUMER_BILL



INVOICE Invoice	Amount CON001 CONSUMER_BILL

INVOICE Invoice	Billing	Id CON001 CONSTANT

INVOICE Invoice	Due	Date CON001 CONSUMER_BILL_DUE_DATE

INVOICE Invoice	Late	charges CON001 CONSUMER_BILL_DUE_DATE



*TRN	CAT,	Transformation	Category.

Now	consider	that	the	source	data	is	not	synchronized.	For	such	a	scenario,	there
are	multiple	options:

1.	Use	the	left	outer	join,	keeping	CONSUMER_BILL	on	the	left	side	and	lose
CONSUMER_BILL_DUE_DATE	information.

2.	Use	the	full	outer	join	and,	when	merging	data	into	target	table,	populate	only
NOT	NULL	target	columns.

In	real	life,	data	in	source	tables	is	mostly	unsynchronized,	and	the	data	mapper
must	create	rules	to	handle	this.	We	need	to	ensure	that	we	try	to	load	all	source
information	in	target	tables.

Last,	there	could	be	a	possibility	of	having	multiple	rows	in	source	tables.
Reasons	could	be:

1.	Multiple	extracts	are	loaded	in	single	execution.

2.	Data	quality	issue

3.	Source	table	structure

In	such	a	case,	add	a	rule	to	take	only	one	row	from	the	source	table.	The
simplest	way	is	to	use	qualifying	statements.	In	the	header	rule,	add	the
following	text:	“In	case	there	are	multiple	rows	for	one	Bill_Id	in	source	tables,
select	the	latest	row	based	on	extraction	date.”



Data	Integration	from	Multiple	Sources	(Normalized
Model)

In	almost	all	organizations,	the	same	data	is	available	from	multiple	sources.
This	provides	better	data	quality	and	coverage	for	a	data	warehouse.	However,	at
the	same	time,	it	creates	complexity	in	the	ETL	process	and	data	mapping.

We	need	a	process	that	gives	high	priority	to	a	source	over	the	other.	Think	about
having	more	than	two	sources	and	prioritizing	data	per	table.

No	matter	how	difficult	and	complex	it	is,	the	end	result	is	information	that	is
complete	and	of	the	best	possible	quality,	giving	the	client	the	power	to	use	it	for
reporting	benefits.

In	this	mapping,	we	will	discuss	a	prioritization	process	that	can	be	used	for	all
mappings	in	the	target	table.

Source

In	this	scenario,	we	will	map	data	for	televisions	that	are	manufactured	by	the
client	and	store	the	data	in	the	ITEM	INSTANCE	table.	Consider	the	following
sources	and	tables:

1.	The	first	source	is	the	manufacturing	system	used	in	factories;	the	table	name
is	Manufac_Detail.

2.	The	second	source	is	a	testing	system,	where	data	is	inserted	after	testing	is
carried	out;	the	table	name	is	Device_QA.

3.	The	third	source	is	a	sales	system,	where	data	is	populated	after	a	television	is



sold	to	a	customer;	the	table	name	is	Sale.

Because	of	the	different	nature	of	all	three	systems,	we	will	have	multiple
columns	in	each	table.	We	will	be	using	them	based	on	target	table	requirements.

Target

The	target	in	this	scenario	is	the	ITEM	INSTANCE	table,	where	information
regarding	instances	of	an	item	will	be	stored.	In	this	case,	television
manufacturing	data	will	be	loaded	in	this	table.	This	table	is	slightly
denormalized	to	show	how	different	sources	provide	the	same	information
(Figure	12.3).





Figure	12.3	Target	table	for	the	data	integration	scenario.

Mapping

Table	12.3	shows	the	mapping	for	all	three	sources	to	ITEM	INSTANCE.	In	this
example,	we	only	needed	source	table-level	priority,	so	we	defined	it	at	the
header	level.	As	it	can	be	seen	in	the	table,	one	source	has	been	defined	as	the
master	for	ITEM	INSTANCE	and	the	other	two	as	negative	or	secondary
sources.	The	priority	is	defined	in	the	header,	which	is	later	used	to	merge	load-
ready	data	into	the	EDW	table.

Table	12.3

Data	Mapping	for	the	Data	Integration	Scenario

Target	Table Target	Column Record	Id Source	Table

ITEM	INSTANCE MAN001 MANUF_DETAIL

ITEM	INSTANCE Item	Instance	Id MAN001 MANUF_DETAIL

ITEM	INSTANCE Item	Instance	Date MAN001 MANUF_DETAIL



ITEM	INSTANCE Item	Instance	Color MAN001 MANUF_DETAIL

ITEM	INSTANCE Item	Instance	Size MAN001 MANUF_DETAIL

ITEM	INSTANCE Item	Instance	Technology MAN001 MANUF_DETAIL

ITEM	INSTANCE Item	Instance	Location MAN001 MANUF_DETAIL

Production_Line

ITEM	INSTANCE Item	Instance	Category	Cd MAN001 CONSTANT

ITEM	INSTANCE MAN001 DEVICE_QA

ITEM	INSTANCE Item	Instance	Id MAN001 DEVICE_QA

ITEM	INSTANCE Item	Instance	Date MAN001 DEVICE_QA

ITEM	INSTANCE Item	Instance	Color MAN001 CONSTANT

ITEM	INSTANCE Item	Instance	Size MAN001 CONSTANT

ITEM	INSTANCE Item	Instance	Technology MAN001 CONSTANT

ITEM	INSTANCE Item	Instance	Location MAN001 CONSTANT

ITEM	INSTANCE Item	Instance	Category	Cd MAN001 CONSTANT

ITEM	INSTANCE MAN001 SALE

WHERE	Sold_Item_Type=“Television”

ITEM	INSTANCE Item	Instance	Id MAN001 SALE

ITEM	INSTANCE Item	Instance	Date MAN001 SALE



ITEM	INSTANCE Item	Instance	Color MAN001 SALE

ITEM	INSTANCE Item	Instance	Size MAN001 SALE

ITEM	INSTANCE Item	Instance	Technology MAN001 SALE

ITEM	INSTANCE Item	Instance	Location MAN001 CONSTANT

ITEM	INSTANCE Item	Instance	Category	Cd MAN001 CONSTANT
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Data	Quality	Improvement

Although	the	quality	of	the	data	cannot	be	controlled	by	the	data	warehouse,
there	are	many	cases	when	well-defined	rules	can	be	used	to	improve	data
quality.	The	ideal	situation	is	that	the	data	warehouse	team	reports	data	quality
issues	to	the	source,	and	the	source	fixes	the	issue.	In	some	cases,	this	is	either
not	possible	or	there	isn’t	enough	time.	In	such	cases,	the	analyst	or	client	SME
will	suggest	rules	for	data	quality	improvement.

Source

Let’s	take	an	example	of	a	cell	phone	manufacturing	client.	The	client	has	a
unique	identification	system	called	DSN	(Device	Serial	Number)	for	its	devices
and	gives	every	device	manufactured	a	unique	ID.	There	is	also	an	international
standard	for	identifying	every	cell	phone	uniquely.	This	code	is	called	IMEI
(International	Mobile	station	Equipment	Identity).

In	this	scenario,	we	have	two	sources.	The	first	one	gives	the	relationship
between	DSN	and	IMEI.	The	second	source	gives	data	about	warranty	claims	for
both	DSN	and	IMEI.	But	most	of	the	time,	DSN	is	either	null	or	contains
garbage	data.

In	EDW,	DSN	is	used	to	uniquely	identify	an	instance	of	cell	phone;	hence,	it	is
not	acceptable	to	have	NULLs	or	garbage	data	in	this	column.	Ideally,	the	source
should	provide	us	this	information,	but	let’s	assume	that	this	cannot	be	done.

A	warranty	claim	row	is	generated	when	a	consumer	comes	to	a	shop	and
submits	the	device	for	repair.	But	because	these	shops	or	repair	centers	can	be
anywhere	around	the	globe,	ensuring	DSN	value	availability	is	difficult.	On	the
other	hand,	all	employees	know	about	an	IMEI,	and	this	information	is	correctly



populated	in	the	source.

Target

ITEM	INSTANCE	IDENTIFICATION	will	be	used	to	store	the	relationship
between	a	DSN	and	IMEI	(Figure	12.4).





Figure	12.4	Target	table	for	the	data	quality	improvement	scenario.

Mapping

See	Table	12.4.

Here,	we	are	trying	to	get	best	possible	value	from	the	source.	Ideally,	we	should
get	a	row	from	ITEM	INST	IDENTIFICATION	as	a	device	is	manufactured	and
then	repaired	if	required.	Even	if	repair	doesn’t	happen,	the	DSN	values	should
be	in	compliance	with	the	client’s	established	rules	(the	first	three	characters	are
letters,	and	the	total	length	is	more	than	eight),	and	only	“valid	value”	should	be
inserted.	If	this	is	not	the	case,	then	insert	“UNKNOWN.”

Table	12.4

Data	Mapping	for	the	Data	Quality	Improvement	Scenario

Target	Table



ITEM	INSTANCE	IDENTIFICATION

ITEM	INSTANCE	IDENTIFICATION

ITEM	INSTANCE	IDENTIFICATION

ITEM	INSTANCE	IDENTIFICATION

ITEM	INSTANCE

Join	with	ITEM	INST	IDENTIFICATION	on	SOURCE.IMEI=Item	Instance	Identification	Number	and	Item	Instance	Identification	Type=1

If	a	row	is	found	then	ignore	this	row.

Else	insert	a	row	only	if	DSN	column	length	is	greater	than	8	and	first	three	characters	are	alphabet	letters.	Use	uppercase	and	trim.

ITEM	INSTANCE

IMEI

ITEM	INSTANCE

WARRANTY	CLAIM

CLAIM	a

Left	join

ITEM	INSTANCE	IDENTIFICATION	b

ON	a.	IMEI=b.	Item	Instance	Identification	Number

AND	b.	Item	Instance	Identification=1

WARRANTY	CLAIM

WARRANTY	CLAIM



WARRANTY	CLAIM

DSN

WARRANTY	CLAIM
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Prioritized	Data	Consolidation	or	Joining

Most	of	the	time,	data	mapping	includes	simple	joins	between	tables	to	create
the	target	dataset.	But	there	are	cases	when	a	complex	priority	system	is	required
to	join	two	tables	of	the	source.	These	kinds	of	cases	can	emerge	when	the
client’s	data	is	not	connected	through	a	well-defined	identification	process	and
the	data	mapper	needs	to	create	transformation	rules	to	join	two	datasets.

Source	data	in	such	cases	can	be	of	bad	quality,	and	the	expected	outcome	of	the
join	is	a	low	rate	of	success.	Yet	the	business	case	requires	this	transformation,
and	the	data	mapper	has	to	get	the	maximum	out	of	this	mapping.

Source

Let’s	take	example	of	a	publisher	that	maintains	different	data	sources	and	wants
to	combine	data	to	get	a	single	picture	of	the	organization.	Two	of	the	client’s
datasets	are:

1.	Mailing	list:	The	client	maintains	a	mailing	list	on	which	it	sends	news	and
updates.	Consumers	can	join	different	mailing	lists	by	filling	in	a	form	online	or
through	other	means.	Data	quality	can	be	bad	in	this	case	because	consumers
might	input	wrong	information	and	give	only	the	correct	email	address.	This	is	a
common	scenario	as	organizations	want	to	grow	their	reach	to	clients	and	allow
consumers	to	get	in	touch	without	formal	accounts.

2.	Order	delivery	system:	The	second	source	system	stores	data	about	order
fulfillment.	Consumers	order	products,	and	the	client	delivers	them.	In	this	case,
the	client	maintains	complete	information	about	the	client,	and	data	quality	is
good	because	the	payment	is	done	based	on	the	client’s	real	name,	and	the
product	will	be	delivered	only	to	the	correct	address.



Although	the	second	source	system	has	an	identification	system	of	the
individual,	it	cannot	be	joined	with	the	first	source	because	there	is	no
identification	column	available	there.	From	the	client’s	perspective,	they	want	to
know	how	many	consumers	ordered	a	product	after	receiving	a	communication
(mailing	list).

Target

In	this	scenario,	our	target	table	is	a	surrogate	key	table	where	we	flag	a
consumer	with	source	system	if	we	find	matching	data	(Figure	12.5).





Figure	12.5	Target	table	for	the	priority-based	data	scenario.

Mapping

A	data	mapper’s	focus	in	this	scenario	should	be	to	that	the	ensure	maximum
possible	data	is	joined	and	identified.	Not	having	a	column	to	join	makes	it
difficult	to	correlate	data,	but	we	will	use	a	priority-based	approach	for	matching
data.

The	first	and	most	accurate	way	to	link	users	from	both	systems	is	to	see
whether	the	email	address	is	the	same.	Below	is	one	way	of	defining	the	priority.

1.	Email	address

2.	Normalized	telephone	or	cell	phone	number

3.	Normalized	address	and	name

4.	Complete	name	and	date	of	birth

5.	Complete	name	and	age

6.	Complete	name	and	gender

7.	Complete	name	(Table	12.5)

Table	12.5

Data	Mapping	for	the	Priority-Based	Data	Scenario



Target	Table

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

where	X	is	country	number,	YYYY	is	area/operator	identifier,	and	ZZZZZZZZ	is	actual	number	of	user

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

M	Male



F	Female

U	Unknown

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

where	X	is	country	number,	YYYY	is	area/operator	identifier,	and	ZZZZZZZZ	is	actual	number	of	user

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY



PERSON_KEY

PERSON_KEY

M	Male

F	Female

U	Unknown

PERSON_KEY

PERSON_KEY

PERSON_KEY

PERSON_KEY
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Normalization	is	mandatory	in	this	scenario	as	it	will	increase	the	chances	of
matching	data.	For	example,	in	the	case	of	a	cell	phone	number,	some	data	might
contain	country	codes,	spaces,	parentheses,	or	zeros	at	the	start.	Before	joining
data,	the	data	mapper	should	make	sure	that	values	from	both	systems	are
normalized	and	can	be	joined.

Addresses	can	also	be	standardized	based	on	well-defined	rules.	In	some
countries,	addresses	are	well	defined	and	are	based	on	a	standard	patterns,	but
still	some	users	fill	in	values	that	cannot	be	joined	directly.	In	such	cases,	either
the	data	mapper	can	define	rules	for	normalizing	values,	or	a	third-party
application	program	interface	(API)	can	be	used	for	this	purpose.



History	Handling	(Normalized	Model)

Data	warehouses	not	only	store	transactions	but	also	track	changes	in	an	entity’s
attributes.	Normally,	we	use	Type	2	slowly	changing	dimension	(SCD)
methodology	for	storing	history	(i.e.,	keeping	all	changes	in	the	table	with
START	and	END	Time/Date	columns).

The	source	should	provide	the	time	or	date	when	change	takes	place.	If	this	is
not	the	case,	then	EDW	will	use	the	time	when	it	received	the	data	from	the
source.

Source

In	this	case,	consider	an	example	of	a	warranty	claim,	in	which	a	device	is
repaired	multiple	times	before	it	is	fixed,	discarded,	or	repaired	again.	The
source	will	provide	this	information.	It	might	provide	multiple	statuses	in	one
extract	or	in	multiple	extracts.	EDW	should	handle	all	possible	scenarios.

Target

The	target	of	this	table	is	EVENT	STATUS.	We	will	track	the	status	of	the
device	repair	at	the	claim	level	(Figure	12.6).





Figure	12.6	Target	table	for	the	normalized	history-handling	scenario.

Mapping

For	history-handled	mappings,	it	is	mandatory	to	mark	the	columns	for	which
change	is	captured.	The	primary	key	of	the	table	would	contain	additional
columns	that	might	not	be	part	of	the	columns	for	which	change	in	nonprimary
key	columns	is	captured	(Table	12.6).

Table	12.6

Data	Mapping	for	the	Normalized	History-Handling	Scenario

Target	Table Target	Column Record	Id Source	Table Source	Column

EVENT	STATUS CLA001 Claim_Status

EVENT	STATUS Event	Id CLA001 Claim_Status Claim_Id

EVENT	STATUS Status	Type	Cd CLA001 CONSTANT “1”

EVENT	STATUS Status	Start	Dttm CLA001 Claim_Status ClaimUpdatedTime



EVENT	STATUS Event	Status	End	Dttm CLA001 History	Handling

EVENT	STATUS Event	Status	Cd CLA001 Claim_Status Claim_Status
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History-handling	rules	need	to	explain	all	possible	scenarios.	They	should	take
care	of:

1.	Loading	anomalies	(e.g.,	backdated	data	sent	by	the	source)

2.	Missing	date	or	time	information

3.	Special	cases	specific	to	the	source	or	table



History	Handling	Done	in	the	Source	(Normalized
Model)

There	can	be	cases	when	the	source	is	providing	history-handled	data	and	the
EDW	needs	to	make	sure	that	the	source’s	history	is	maintained	in	the	EDW.
This	can	be	simpler	than	history	handling	done	inside	EDW	but	needs	careful
interpretation	of	the	source	data	to	make	sure	that	there	is	no	gap	or	overlap.

Source

Let’s	take	the	same	example	of	a	warranty	claim.	This	time	history	handling	of
change	in	status	column	is	done	by	the	source.

Target

See	Figure	12.7.





Figure	12.7	Target	table	for	the	source	history-handling	scenario.

Mapping

See	Table	12.7.

Table	12.7

Data	Mapping	for	the	Source	History-Handling	Scenario

Target	Table

EVENT	STATUS

Source	provides	status	history	to	confirm	source	inserts/	updates	are	stored.	Updates	in	source	can	bring	complexity	in	EDW.	However,	since	source	is	tracking	history,	EDW	needs	to	make	sure	any	changes	in	time	window	source	are	reflected	in	EDW.

To	achieve	this,	EDW	will	identify	whether	a	row	received	from	source	overlaps	with	historical	data	stored	in	EDW.	If	there	is	overlap	EDW	will	delete	the	rows	and	insert	new	source	rows.	In	this	table,	defining	a	primary	key	of	source	data	is	not	possible	because	of	changing	start/end	time.	EDW	will	have	only	one	option,	i.e.,	identify	overlaps	and	try	to	identify	the	change	in	source.

Overlap	in	time	window	is	only	way	a	change	in	source	is	identified.	Once	change	is	identified,	EDW	removes	old	rows	lying	in	this	overlap	and	inserts	change	from	the	source.	Since	history	handling	is	done	insource,	it	does	not	create	gaps/overlaps.

EVENT	STATUS



EVENT	STATUS

EVENT	STATUS

EVENT	STATUS

EVENT	STATUS
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History	Handling	with	No	Rules	on	Date	or	Time

Some	history-handling	requirements	in	data	warehousing	cannot	be	treated	in
terms	of	SCD	types	and	require	special	rules.

Source

The	best	example	of	this	type	of	case	is	from	the	telecom	sector,	where	a
subscriber	can	get	bundles	or	bonus	resources	for	a	certain	time.

1.	The	bundle	can	expire	after	the	time	limit	is	reached.

2.	The	resource	limit	can	be	reached	(e.g.,	100	free	minutes	are	used	before
expiry).

3.	The	same	product	is	subscribed	to	again	before	expiry.

4.	The	user	subscribes	to	a	product	that	has	an	expiry	of	1	year,	but	he	leaves	the
operator.

EDW	needs	to	make	sure	that	all	of	these	cases	are	treated	accordingly	and	that
the	correct	start	and	end	time	are	set.	Because	this	is	not	traditional	history
handling,	the	product	start	and	end	times	are	still	tracked.

Target



For	simplicity,	we	will	store	the	cell	phone	number	in	the	User	Mobile	Number
columns	and	the	subscribed	product,	bundle,	or	offer	in	the	Product	Id	columns
(Figure	12.8).





Figure	12.8	Target	table	for	the	no-rule-date	history-handling	scenario.

Mapping

The	mapping	shown	in	Table	12.8	explains	in	detail	what	to	do	in	different
cases.

Table	12.8

Data	Mapping	for	the	No-Rule-Date	History	Handling	Scenario

Target	Table

PRODUCT	SUBSCRIPTION

Case	1:	Un-Subscription

Select	all	rows	where	Subscription	Status	Cd=1.	This	will	give	you	un-subscriptions.

Find	this	subscription	in	Target	table	for	combination	of	(User	Mobile	Number	and	Product	Id)	and	set	Subscription	End	Dttm=Tmstmp

Case	2:	Expiry



Select	all	rows	where	Subscription	Status	Cd=2.	This	will	give	expiries.

Find	this	subscription	in	target	table	for	combination	of	(User	Mobile	Number	and	Product	Id)	and	set	Subscription	End	Dttm=Tmstmp

Case	3:	Subscription	and	Re-Subscription

Select	all	rows	where	Subscription	Status	Cd=0.	This	will	give	subscriptions	of	new	products.

Check	if	there	exists	a	row	in	EDW	that	has	END	DTTM	less	than	START	DTTM	of	source.	This	will	give	subscriptions	that	happened	before	expiry	of	previous	subscriptions.	Close	previous	record	and	insert	new	one.	In	case	no	row	is	found	then	insert	the	new	one	only

There	are	chances	that	subscription/insubscriptions/expiry/multiple	subscriptions	happen	in	a	single	extract.	The	code	should	close-open	records	accordingly

PRODUCT	SUBSCRIPTION

PRODUCT	SUBSCRIPTION

PRODUCT	SUBSCRIPTION

PRODUCT	SUBSCRIPTION

PRODUCT	SUBSCRIPTION

0	Subscription

1	Un-subscription

2	Expiry

PRODUCT	SUBSCRIPTION

Use	the	MSISDN	and	close	all	open	records

PRODUCT	SUBSCRIPTION

PRODUCT	SUBSCRIPTION



PRODUCT	SUBSCRIPTION

PRODUCT	SUBSCRIPTION

PRODUCT	SUBSCRIPTION
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Joining	the	Source	Data	with	the	Target	Table

When	making	a	decision	about	joins	in	the	source	system,	it	is	sometimes	not
possible	to	join	transactional	data	of	the	source	with	the	master	data	of	the
source;	there	could	be	many	reasons	for	this	problem,	including:

1.	Data	quality:	Data	quality	is	major	problem	in	data	warehouse	success,	as
discussed	throughout	this	book.	If	the	source	data	is	of	bad	quality,	then	we
apply	special	transformation	rules	to	improve	the	quality	of	the	data	in	the	target
table.	For	master	data,	we	usually	rely	on	good	sources	to	load	target	tables	and
ignore	dirty	sources,	or	we	apply	rules	to	fix	dirty	data.	When	we	compare	the
source	versus	the	target	for	our	join	in	transformation,	we	have	to	use	the	target
table	to	ensure	that	our	joins	meet	business	requirements.

2.	Business	logic:	If	the	source	system	doesn’t	provide	complete	data	and	the
only	way	to	complete	transformation	of	the	source	data	is	to	use	the	target	table,
then	we	use	a	join	with	the	target	tables.	For	example,	the	source	provides
employees’	information	but	doesn’t	provide	employees’	current	status.	The	status
of	the	employees	is	stored	in	a	target	loaded	from	another	source	system.	In	this
case,	we	will	join	the	source	with	the	target	to	get	the	final	transformed	data.

3.	Data	completeness:	If	the	source	data	contains	partial	data	and	transformation
(aggregations	or	lookup)	requires	a	complete	dataset,	then	we	join	with	the	target
table	to	get	access	to	the	complete	data	set.	An	example	may	be	master	data	from
the	source.	If	the	source	contains	only	active	users	and	the	join	requires	all	users,
then	we	will	join	with	the	target	table	to	get	access	to	all	users.

Source

For	this	scenario	we	will	discuss	a	business	logic	case	for	understanding	the



concept.	The	source	in	this	case	contains	employees’	data	(Table	12.9).

Table	12.9

Source	Data	for	the	Target	Join	Scenario

Employee	Id Name Address

1 John London

2 Peter Paris

3 Alecia Karachi



Target

The	target	in	this	case	requires	employees’	personal	data	along	with	their	most
recent	employment	status	(Figure	12.9).





Figure	12.9	Data	mapping	for	the	target	join	scenario.

Mapping

Because	the	source	doesn’t	provide	the	employees’	status,	we	will	use	a	target
table	to	populate	this	column.	The	target	table	used	in	this	case	is
EMPLOYEE_STATUS	loaded	from	another	source	(Table	12.10).

Table	12.10

Data	Mapping	for	Target	Join	Scenario

Target	Table Target	Column Source	System Source	Table Source	Column

EMPLOYEE ADMIN_DBO EMP

EMPLOYEE Employee_Id ADMIN_DBO EMP Employee_Id

EMPLOYEE Name ADMIN_DBO EMP Name

EMPLOYEE Address ADMIN_DBO EMP Address



EMPLOYEE Status EDW EMPLOYEE_STATUS Status_Id



Joins	with	the	target	table	are	inevitable	and	are	required	in	enterprise-level	data
warehouse	implementations	to	fulfill	business	requirements.



History	Handling	from	Snapshots

Some	source	systems	maintain	snapshots	of	their	data	on	a	predefined	frequency.
Snapshot	frequency	depends	on	the	source’s	requirement	and	is	not	directly
meant	for	data	warehousing.	Based	on	the	business	requirements	of	the	data
warehouse,	we	have	to	create	time	windows	from	these	snapshots.

If	the	primary	key	of	the	snapshot	and	target	table	is	the	same,	then	the	logic	is
simple—we	identify	when	there	was	a	change	in	the	source	data	and	take	that
row	to	the	data	warehouse,	ignoring	the	rest	of	the	data.

Source

Consider	an	administrative	source	system	where	employee	information	is	stored
and	the	system	takes	a	snapshot	of	the	data	every	day	(Table	12.11).

Table	12.11

Source	Data	for	the	Snapshot	History-Handling	Scenario



Employee	Id Snapshot	Date Name Married Address Salary

1 1/1/2017 Alecia N London 10

1 1/2/2017 Alecia N London 10

1 1/3/2017 Alecia N London 10

1 1/4/2017 Alecia N Paris 10

1 1/5/2017 Alecia N Paris 10

1 1/6/2017 Alecia N Paris 10

1 1/7/2017 Alecia	Carpenter Y Paris 10

1 1/8/2017 Alecia	Carpenter Y Paris 10

1 1/9/2017 Alecia	Carpenter Y Paris 10

1 1/10/2017 Alecia	Carpenter Y Paris 20



Target

In	this	scenario,	we	will	map	source	snapshots	to	three	target	tables.	The	main
table,	EMPLOYEE,	will	store	master	data,	and	the	other	two	tables	will	maintain
a	history	of	the	employees’	attributes	(Figure	12.10).





Figure	12.10	Target	table	for	the	snapshot	history-handling	scenario.

Mapping

The	first	thing	we	have	to	do	is	to	think	of	the	delta	and	initial	loads	separately.
Daily	or	delta	loading	is	simple	because	we	need	to	compare	a	snapshot	row
with	the	latest	row	in	the	target	to	see	if	there	is	any	change	in	the	source	for
transformation.

However,	in	the	initial	load,	we	need	to	identify	rows	where	data	changed	and
treat	it	appropriately.	We	can	create	a	single	mapping	or	code	for	both	cases,	but
it	will	make	things	complex,	so	it	is	recommended	to	create	two	separate
mappings.

Let’s	discuss	change	in	address	for	of	the	employee.	From	the	data	sample
earlier,	we	can	see	that	this	employee	moved	only	once	to	a	new	address	on
2017-01-04;	this	means	that	all	other	rows	of	this	table	will	be	ignored	for	this
mapping	(Table	12.12).

Table	12.12

Data	Mapping	for	the	Snapshot	History-Handling	Scenario



Employee	Id Snapshot	Date Name Married Address Salary

1 1/1/2017 Alecia N London 10

1 1/4/2017 Alecia N Paris 10



The	below	SQL	code	gives	a	simple	logic	that	can	be	used	to	get	only	those	rows
that	have	a	change	in	source.

	SELECT	a.Employee_Id,a.Address,	a.snapshotdate

	FROM

	(

		SELECT	Employee_Id,	Address,	snapshotdate,	row_number	()
over(PARTITION	BY	Employee_Id	ORDER	BY	snapshotdate)	rankk

		FROM	EMPLOYEE_SNAPSHOT

		WHERE	Address	IS	NOT	NULL	AND	Employee_Id	IS	NOT	NULL

	)	a

	LEFT	JOIN

	(

		SELECT	Employee_Id,Address,	snapshotdate,	row_number	()
over(PARTITION	BY	Employee_Id	ORDER	BY	snapshotdate)	rankk

		FROM	EMPLOYEE_SNAPSHOT

		WHERE	Address	IS	NOT	NULL	AND	Employee_Id	IS	NOT	NULL

	)	b

	ON	a.Employee_Id	=	b.Employee_Id

	AND	a.rankk	=	b.rankk+1

	AND	a.Address	!=	b.Address



	WHERE	b.Employee_Id	IS	NOT	NULL	OR	a.rankk=1

Because	the	snapshot	is	incremental,	we	need	to	decide	whether	to	ignore	old
data	that	came	after	we	loaded	later	data.	For	example,	if	we	have	loaded	the
2017-January	snapshot	data	in	the	data	warehouse	and	now	receive	2014	data
from	source,	we	need	to	decide	whether	we	will	discard	old	data	or	if	we	will
rebuild	history	in	the	data	warehouse.	This	should	be	discussed	with	the	client
and	a	decision	made	to	meet	business	requirements.



Master	Data	(Normalized	Model)

Master	data	or	reference	data	is	as	important	as	transactional	or	fact	data.	It	is
needed	in	reporting	and	provides	dimensional	insights	for	facts.	Master	data
should	come	from	a	single	source;	it	should	be	complete,	clean,	and	historically
accurate.

In	some	projects,	the	data	steward	creates	this	data	for	the	data	warehouse	in	a
static	source	or	data	warehouse	tables.	This	static	data	is	augmented	whenever
new	values	are	added	(e.g.,	new	products	launched	by	the	company,	the
company	starts	business	in	new	country).	In	this	case,	the	data	warehouse
doesn’t	need	complex	rules,	so	this	data	is	simply	loaded	in	the	EDW.

In	most	projects,	the	EDW	has	to	rely	on	source	system	data	for	populating	its
reference	or	master	data	tables.	This	creates	a	lot	of	complexity	because	getting
full	understanding	of	the	client’s	business	is	not	only	difficult	but	sometimes
impossible.	The	data	mapper	has	to	make	the	best	out	of	what	information	is
available	and	create	mappings	or	rules	to	provide	the	best	data	in	the	EDW.

The	real	challenge	here	is	data	coming	from	transactional	systems	that	is	not
received	from	the	main	source	(e.g.,	a	telecom	subscriber	starts	making	calls,	but
the	master	data	will	come	later,	and	call	records	start	coming	to	EDW	in	real
time).	These	source	systems	create	major	challenges	for	designers	with	questions
such	as:

1.	What	will	happen	to	the	data	that	is	already	loaded	in	the	EDW	without
master	data?

2.	What	should	be	done	with	data	for	which	master	data	has	been	updated	in	the
master	source	but	not	reflected	in	the	transactional	system?

3.	How	should	time-based	master	data	from	nonmaster	sources	be	handled?

4.	How	should	history	for	data	that	is	coming	from	both	master	and	transactional
source	systems	be	built?



All	of	these	questions	and	other	factors	should	be	addressed	by	the	data	mapper.
The	logic	will	vary	from	project	to	project.	A	comprehensive	analysis	of	the
client’s	business	working	is	required	before	the	master	data	can	be	mapped.

Below	are	some	examples	that	will	give	basic	idea	regarding	mappings	of	master
data.	In	real-life	scenarios,	data	mapping	should	only	be	done	after	the	data
mapper	has	complete	understanding	of	the	source	data.

Source

Let’s	take	an	example	of	a	car	manufacturer	that	has	master	data	of	cars	coming
from	Design	source	table	and	manufacturing	data	coming	from	the	Manuf.
source	table.	The	Design	table	will	provide	information	about	the	company’s
designs	of	cars	and	their	grouping.	The	Manuf.	table	will	provide	information	of
all	cars	manufactured	based	on	design.

Target

See	Figure	12.11.





Figure	12.11	Target	table	for	the	master	data	scenario.

Mapping

We	will	map	both	the	source	data	to	these	tables	and	see	which	rules	are	used	to
handle	different	complex	issues.

Let’s	first	see	mappings	of	the	main	ITEM	table	from	both	sources.	This	is
relatively	easier	because	we	will	be	using	the	master	source	for	UPSERT	and	the
secondary	source	for	INSERT	only	(Table	12.13).

Table	12.13

Data	Mapping	for	the	Master	Data	Scenario	1

Target	Table Target	Column Record	Id Source	Table Source	Column

ITEM MAN001 MANUF

ITEM Item	Key MAN001 MANUF Design_Cd

ITEM Item	Name MAN001 CONSTANT NULL



ITEM Item	Description MAN001 CONSTANT NULL

ITEM Item	Design	Time MAN001 MANUF Manuf_St

ITEM Item	Type	Code MAN001 CONSTANT “1”

ITEM Item	Class	Code MAN001 CONSTANT “1”

ITEM DES001 DESIGN

ITEM Item	Key DES001 DESIGN Design_Cd

ITEM Item	Name DES001 DESIGN Design_Name

ITEM Item	Description DES001 DESIGN Design_Desc

ITEM Item	Design	Time DES001 DESIGN Design_Comp_Tm

ITEM Item	Type	Code DES001 CONSTANT “1”

ITEM Item	Class	Code DES001 DESIGN Design_Type



*TRN	CAT,	Transformation	Category.

For	cases	in	which	history	handling	is	done	on	master	data,	it	is	recommended
not	to	use	secondary	or	transactional	systems	to	load	data.	If	the	SME	guarantees
or	the	data	mapper	can	conclude	from	analysis	that	the	transactional	system	is	or
will	provide	the	correct	data,	then	we	can	load	this	data	in	history-treated	tables.
Next,	the	design	decision	for	the	data	mapper	is	what	to	do	when	there	is	overlap
between	two	systems	and	they	each	give	different	values.	In	such	a	case,	priority
has	to	be	given	to	the	source	that	is	more	trustworthy.

For	example,	in	our	case	study,	assume	that	the	design	was	made	in	2012	JAN
and	therefore	that	design	XYZ	will	be	categorized	as	an	SUV	(sports	utility
vehicle).	However,	after	manufacturing	started,	government	rules	changed	in
January	2013,	and	now	the	design	XYZ	is	categorized	as	a	mini-van.	The	design
source	system	reflected	the	change	in	February	2013,	and	the	manufacturing
system	started	sending	the	new	value	in	January	2013.	Here,	we	have	an	overlap,
and	both	sources	are	giving	different	values.	Because	we	know	what	happened,
it	is	easy	to	conclude	that	the	manufacturing	system	is	giving	the	correct	value.
As	you	might	have	noticed,	the	data	mapper	has	to	ask	a	lot	of	questions	of	the
SME	and	needs	to	have	comprehensive	understanding	of	the	client’s	business	to
make	decisions.	From	first	thought,	the	data	mapper	can	declare	the	DESIGN
source	system	as	more	authentic,	but	in	reality,	it	was	not	the	case	(Table	12.14).

Table	12.14

Data	Mapping	for	the	Master	Data	Scenario	2



Record	Id Source	Table Source	Column TRN	CAT* Transformation	Rule

DES001 DESIGN + Do	History	Handling	when	Item	Group	Id	change	for	Item	Key

DES001 DESIGN Design_Cd Direct

DES001 DESIGN US_DMV_Group Direct

DES001 DESIGN Design_Start_Dt Direct

DES001 DESIGN

MAN001 MANUF _ History	Handling	when	Item	Group	Id	changes	for	Item	Key.	If	there	is	overlap	records	between	DESIGN	and	MANUF	source	system	data	then	Manufacturing	data	gets	high	priority	and	time	windows	have	no	overlaps.

MAN001 MANUF Design_Cd Direct

MAN001 MANUF DMV_Val Direct

MAN001 MANUF Manuf_St Direct

MAN001 MANUF



*TRN	CAT,	Transformation	Category.

These	kinds	of	issues	can	also	be	seen	in	the	telecom	industry,	where	a
subscriber	buys	a	SIM	card	and	starts	making	calls,	but	his	master	data	might
come	later	in	that	day	to	EDW.

In	some	cases,	master	sources	might	keep	only	the	latest	state	of	a	logical	entity,
but	history	comes	from	a	transactional	source.	A	very	good	example	of	this	case
is	different	cell	phones	used	by	a	subscriber	to	makes	calls	with	the	same	SIM
card.	In	the	call	record	source	system,	you	will	receive	the	IMEI	of	every	cell
phone	with	calls,	and	from	the	master	source,	you	will	receive	only	the	latest
IMEI.	Hence,	it	makes	more	sense	to	store	historical	data	of	a	subscriber’s
device	or	cell	phone	from	the	call	record	system	rather	than	the	master	source.
Master	data	should	be	loaded	from	both	types	of	sources	to	have	a	complete
picture	in	EDW.



Surrogate	Keys

A	surrogate	key	is	a	unique	key	for	an	entity	in	the	client’s	business	or	for	an
object	in	the	database.	Sometimes	natural	keys	cannot	be	used	to	create	a	unique
primary	key	of	the	table.	This	is	when	the	data	modeler	or	architect	decides	to
use	surrogate	or	helping	keys	for	a	table	in	the	LDM.

Some	benefits	of	surrogate	keys	are:

1.	Surrogate	keys	do	not	change	while	the	row	exists.

2.	Natural	keys	might	change	in	the	source	(e.g.,	migration	to	a	new	system),
making	them	useless	in	the	data	warehouse.

3.	Surrogate	keys	have	numeric	data	types,	which	provide	excellent	performance
during	data	processing	and	business	queries.

4.	Code	can	be	automated	if	surrogate	keys	are	shared	across	tables,	making	the
ETL	process	simpler.

Source

Let	us	consider	a	telecom	client	that	receives	call	records	data	from	a	Mobile
Switching	Centre	(MSC)	and	Intelligent	Network	(IN)	source	systems.	A	call
may	be	uniquely	identified	using	multiple	columns	such	as	calling	number,
called	number,	time	of	call,	and	type	of	call	(depending	on	the	client’s	business
requirements).	Based	on	the	identified	columns,	we	would	generate	surrogate
tables	mapping	for	MSC	and	IN	source	systems.



Target

Our	target	in	this	case	is	a	surrogate	table	that	will	hold	source	values	and	assign
an	incremental	value	to	each	record.	Note	that	we	have	a	column
Call_Source_Type,	which	will	help	in	differentiating	between	the	same	records
coming	from	different	systems.	Ideally,	a	data	warehouse	should	identify	the
same	records	coming	from	two	systems;	however,	in	reality,	the	same	kind	of
call	coming	from	two	different	systems	cannot	be	correlated	because	of	their
time	difference.	As	a	result,	most	telecom	clients	would	like	to	keep	data
separately,	which	will	be	matched	at	an	aggregated	level	of	reporting	(Figure
12.12).





Figure	12.12	Target	table	for	the	surrogate	key	scenario.

Mapping

See	Table	12.15.

Convert	to	Date	rules:	Most	of	the	time,	developers	will	complain	about	errors
related	to	mismatch	of	data	types.	Make	sure	that	you	add	data	types	of	source
and	target	columns	and	provide	rules	to	convert	if	they	are	not	implicitly
converted.

Table	12.15

Data	Mapping	for	the	Surrogate	Key	Scenario

Target	Table Target	Column Record	Id Source	Table Source	Column

S_CALL_RECORD IN001 IN



S_CALL_RECORD Call_Record_Id IN001 ETL

S_CALL_RECORD Calling_Number IN001 IN Anum

S_CALL_RECORD Called_Number IN001 IN Bnum

S_CALL_RECORD Call_Date IN001 IN tm_Stamp

S_CALL_RECORD Call_Time IN001 IN tm_Stamp

S_CALL_RECORD Call_Type IN001 IN Event_Type_Id

S_CALL_RECORD Call_Source_Type IN001 CONSTANT “1”

S_CALL_RECORD MSC01 MSC_CALL

S_CALL_RECORD Call_Record_Id MSC001 ETL

S_CALL_RECORD Calling_Number MSC001 MSC_CALL MSC_COL_3

S_CALL_RECORD Called_Number MSC001 MSC_CALL MSC_COL_13

S_CALL_RECORD Call_Date MSC001 MSC_CALL MSC_time

S_CALL_RECORD Call_Time MSC001 MSC_CALL MSC_time

S_CALL_RECORD Call_Type MSC001 CONSTANT “1”

S_CALL_RECORD Call_Source_Type MSC001 CONSTANT “2”

S_CALL_RECORD MSC002 MSC_SMS

S_CALL_RECORD Call_Record_Id MSC002 ETL

S_CALL_RECORD Calling_Number MSC002 MSC_SMS MSC_COL_3

S_CALL_RECORD Called_Number MSC002 MSC_SMS MSC_COL_13



S_CALL_RECORD Call_Date MSC002 MSC_SMS MSC_time

S_CALL_RECORD Call_Time MSC002 MSC_SMS MSC_time

S_CALL_RECORD Call_Type MSC002 CONSTANT “2”

S_CALL_RECORD Call_Source_Type MSC002 CONSTANT “1”

S_CALL_RECORD MSC003 MSC_DATA

S_CALL_RECORD Call_Record_Id MSC003 ETL

S_CALL_RECORD Calling_Number MSC003 MSC_DATA MSC_COL_3

S_CALL_RECORD Called_Number MSC003 MSC_DATA MSC_COL_13

S_CALL_RECORD Call_Date MSC003 MSC_DATA MSC_time

S_CALL_RECORD Call_Time MSC003 MSC_DATA MSC_time

S_CALL_RECORD Call_Type MSC003 CONSTANT “3”

S_CALL_RECORD Call_Source_Type MSC003 CONSTANT “1”



*TRN	CAT,	Transformation	Category.

Development	of	these	mappings	is	fairly	straightforward	with	a	simple	check	to
find	out	if	a	row	exists	in	the	target	or	not.	If	yes,	then	do	nothing;	if	no,	insert	a
new	row.



Call	Detail	Record	(CDR)	Mapping

Telecom	clients	exchange	high	volumes	of	call	data.	Business	enterprises	get
valuable	insights	from	the	call	data,	thus	helping	them	to	manipulate	this
priceless	data	to	devise	their	business	and	marketing	strategies.	Loading	of
telecom	data	into	a	data	warehouse	requires	specific	rules	and	handling
procedures.	We	will	explain	how	mapping	handles	and	addresses	these	telecom
issues	with	the	help	of	an	example.

Source

In	this	case,	the	source	is	mediated	or	rated	Call	Detail	Record	(CDR)	data.

Target

In	this	case,	the	target	is	the	CALL	RECORD	table.	We	understand	that	this
table	should	also	contain	other	information,	but	to	keep	things	simple	and	easy	to
understand,	we	confine	our	mapping	to	fewer	columns	(Figure	12.13).





Figure	12.13	Target	table	for	the	telecom	CDR	data	scenario.

Mapping

Note	that	we	are	joining	with	surrogate	tables	to	generate	data	warehouse	keys
(Table	12.16).	We	are	also	trying	to	provide	price	plan	information	if	the	source
doesn’t	do	so.	Last,	we	are	converting	the	duration	of	calls	into	pulses	(i.e.,
providing	units	used	in	calls	based	on	“charge	time	units”).	For	example,	if	the
duration	of	a	call	is	91	seconds	and	charging	is	done	per	30	seconds,	then
“charge	time	units”	used	will	be	4.	Similarly,	for	data	session,	we	are	converting
data	volume	into	units	of	64	KB.

Table	12.16

Data	Mapping	for	the	Telecom	CDR	Data	Scenario

Target	Table

CALL_RECORD

IN	IN



LEFT	JOIN	S_CALL_RECORD	SCR

ON	IN.Anum=SCR.Calling_Number

AND	IN.Bnum=SCR.Called_Number

AND	IN.tm_Stamp=SCR.Call_Date	–	convert	source	to	Date

AND	IN.tm_Stamp=SCR.Call_Time	–	convert	source	to	Time

AND	IN.Event_Type_Id=SCR.Call_Type

AND	SCR.Call_Source_Type=1

LEFT	JOIN	Price_Plan	PP

ON	PP.Price_Plan_Name=IN.pplan

LEFT	JOIN	Subscriber_Price_Plan	SPP

ON	SPP.Subscriber_Id=IN.Anum

AND	SPP.End_Dt	IS	NULL

LEFT	JOIN	CALL_RESULT	CR

ON	CR.Call_Result_Name=IN.Termination_Reason

CALL_RECORD

CALL_RECORD

CALL_RECORD

CALL_RECORD

CALL_RECORD



CALL_RECORD

CALL_RECORD

Duration

CALL_RECORD

Duration

CALL_RECORD

Subscriber_Price_Plan	Spp

CALL_RECORD

CALL_RECORD

	WHEN	1

	THEN

	CASE	(pp.Price_Plan_Id,spp.Price_Plan_Id)

		WHEN	1	--	1	second	billing

		THEN	DURATION

		WHEN	2	--	30	second	billing

THEN	Duration/30	+	CASE	WHEN	Duration	-	(Cast	(Duration/30	as	Integer)	*	30)	>	0	THEN	1	ELSE	0	END

		ELSE

		DURATION/60	+	CASE	WHEN	Duration	-	(Cast	(Duration/60	as	Integer)	*	60)	>	0	THEN	1	ELSE	0	END



		END

	WHEN	3

	THEN

		VOLUME/64	+	CASE	WHEN	VOLUME	-	(Cast	(VOLUME	/64	as	Integer)	*	64)	>	0	THEN	1	ELSE	0	END	--	client	charges	@64kb

	ELSE	COALESCE	(DURATION,0)

END

CALL_RECORD

CALL_RECORD

CALL_RECORD



*TRN	CAT,	Transformation	Category.



Performance	Issue	Handling	in	Mapping

Apart	from	logical	mappings,	the	data	mapper	should	also	have	a	basic
understanding	of	the	database	or	ETL	engine.	This	is	required	when	optimizing
code	and	changing	mapping	logic.	Performance	optimization	is	documented	in
data	mapping	whenever	there	is	a	change	in	transformation	logic.	If	there	is	no
room	for	performance	improvement	based	on	the	current	rules,	then	mapping
should	be	updated	and	redesigned	to	address	the	performance	issues.

We	can	divide	single	mapping	into	multiple	mappings	to	divide	the	load	or
change	the	rules	in	the	same	mapping.	From	a	data	mapping	perspective,	any
change	made	for	performance	optimization	should	be	documented	and	should
provide	the	same	business	results.

Source

Let’s	consider	the	same	example	that	we	have	just	discussed	for	the	telecom
client’s	call	data.	This	is	a	very	good	example	of	high	data	volume	during	ETL
loading	that	involves	many	joins	with	large	tables.

Target

See	Figure	12.14.





Figure	12.14	Target	table	for	the	performance	issue	scenario.

Mapping

In	the	following	mapping,	we	have	divided	a	single	transformation	into	two.	The
idea	is	to	divide	joins	into	two	sets	to	ensure	that	indexes	are	used	in	the	best
possible	way.	We	will	not	get	into	the	details	of	performance	tuning	here,	but
here	are	some	tips	for	a	good	start:

1.	Try	to	separate	the	joins	based	on	joining	column;	for	example,	one	set	could
be	the	one	having	all	joins	based	on	calling	number	(Anum).

2.	Try	to	divide	bigger	table	joins	into	separate	sets.

3.	Identify	a	bigger	table	in	which	a	nonindexed	column	is	being	used	in	a	join.
Extract	the	required	data	from	this	table	into	a	temporary	table	and	index	the
temporary	table	on	the	joining	column.

4.	Find	a	table	that	is	causing	product	joins	and	check	if	you	can	reduce	that
table’s	data	without	using	the	product	join.	Sometime,	a	table	might	have
multiple	rows	for	the	same	joining	column.	This	could	be	a	data	quality	issue	or
could	be	caused	by	a	primary	key	difference.	If	our	logic	allows,	we	can	qualify
this	data	into	one	row	for	one	joining	column	value	and	store	this	resultset	into	a
temporary	table	and	later	use	that	temporary	table	in	a	join	with	the	source	table.

5.	Check	if	nulls	are	causing	performance	degradation,	and	if	necessary,	place
conditions	accordingly.	For	example,	Coalesce
(IN.columnname,‘0’)=tgt.columnname	(Table	12.17)

Table	12.17



Data	Mapping	for	the	Performance	Issue	Scenario

Target	Table

CALL_RECORD_TEMP

IN	IN

LEFT	JOIN	S_CALL_RECORD	SCR

ON	IN.Anum=SCR.Calling_Number

AND	IN.Bnum=SCR.Called_Number

AND	IN.tm_Stamp=SCR.Call_Date	–	convert	source	to	Date

AND	IN.tm_Stamp=SCR.Call_Time	–	convert	source	to	Time

AND	IN.Event_Type_Id=SCR.Call_Type

AND	SCR.Call_Source_Type=1

CALL_RECORD_TEMP

CALL_RECORD_TEMP

CALL_RECORD_TEMP

CALL_RECORD_TEMP



CALL_RECORD_TEMP

CALL_RECORD_TEMP

CALL_RECORD_TEMP

Duration

CALL_RECORD_TEMP

Duration

CALL_RECORD_TEMP

CALL_RECORD_TEMP

CALL_RECORD_TEMP

	WHEN	1

	THEN

		CASE	(pp.Price_Plan_Id,spp.Price_Plan_Id)

		WHEN	1	–	1	second	billing

		THEN	DURATION

		WHEN	2	–	30	second	billing

		THEN	Duration/30+CASE	WHEN	Duration	–	(Cast	(Duration/30	as	Integer)	*	30)	>	0	THEN	1	ELSE	0	END

		ELSE

		DURATION/60+CASE	WHEN	Duration	-	(Cast	(Duration/60	as	Integer)	*	60)	>	0	THEN	1	ELSE	0	END

		END



	WHEN	3

	THEN

		DURATION/64+CASE	WHEN	Duration	-	(Cast	(Duration/64	as	Integer)	*	64)	>	0	THEN	1	ELSE	0	END	–	client	charges	@64	kb

	ELSE	COALESCE	(DURATION,0)

END

CALL_RECORD_TEMP

CALL_RECORD_TEMP

CALL_RECORD_TEMP

CALL_RECORD

CALL_RECORD_TEMP	CRT

LEFT	JOIN	Price_Plan	PP

ON	PP.Price_Plan_Name=CRT.ppl	AND	CRT.pplan	IS	NOT	NULL

LEFT	JOIN	Subscriber_Price_Plan	SPP

ON	SPP.Subscriber_Id=CRT.Calling_Number

AND	SPP.End_Dt	is	null

LEFT	JOIN	CALL_RESULT	CR

ON	CR.Call_Result_Name=CRT.Termination_Reason

CALL_RECORD



CALL_RECORD

CALL_RECORD

CALL_RECORD

CALL_RECORD

CALL_RECORD

CALL_RECORD

CALL_RECORD

CALL_RECORD

Subscriber_Price_Plan	Spp

CALL_RECORD

CALL_RECORD

CALL_RECORD

CALL_RECORD

CALL_RECORD
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Business	Mapping,	Reference,	and	Lookup	Data
(Normalized	Model)

Reference	or	lookup	data	is	necessary	for	reporting	because	it	provides	business
users	with	a	method	of	identifying	problems.	For	example,	a	business	user	can
use	the	country	code	dimension	to	investigate	further	in	case	its	revenue	and
sales	are	going	down.	In	this	way,	countries	that	are	not	performing	well	may	be
identified,	and	based	on	this	feedback,	the	business	user	may	get	back	to	the
strategy	to	rectify	the	issues	and	improve	performance.

The	client	should	provide	this	reference	data	to	avoid	manual	code	handling
within	a	data	warehouse.	In	the	absence	of	reference	data,	the	data	warehouse
will	either	perform	this	manually	or	through	code.	As	a	result,	both	of	these
methods	may	create	garbage,	which	might	eventually	show	up	in	final	reports.

For	example,	if	these	codes	are	handled	manually,	then	data	mapper	Mr.	X	will
assign	code	1	to	country	USA.	Assume	that	Mr.	X	leaves	the	project	and	is
replaced	by	Mr.	Y.	When	the	source	sends	Country	Code=USA	next	month	and
if	Mr.	Y	is	not	aware	of	USA,	then	he	will	assign	a	new	code	to	US,	thus
creating	a	duplicate	in	the	reference	data.	Eventually,	business	users	will	see	two
countries	in	the	report—US	and	USA.

If	these	codes	are	handled	automatically,	that	is,	through	surrogate	keys,	then	the
data	warehouse	might	get	populated	with	garbage	data,	and	business	users	might
see	500	countries	and	start	wondering	where	they	came	from.

Source

In	this	scenario,	we	will	consider	two	sources	for	country	data.



Target

See	Figure	12.15.





Figure	12.15	Target	table	for	the	reference	data	scenario.

Mapping

For	this	mapping,	we	have	loaded	the	main	data	from	the	file	provided	by	the
data	steward	and	then	complemented	it	with	source	data.	Note	that	the	negative
system	will	update	any	data	in	the	target,	but	it	will	only	do	an	insert	if	it	is
unable	to	find	that	particular	country	code	in	the	target	table.

We	added	a	flag	that	will	tell	us	whether	this	country	code	came	from	a	valid
source	(1)	or	from	the	source	system	(0).

Make	sure	that	you	put	all	kinds	of	cleansing	rules	on	source	values	to	ensure
that	valid	LOOKING	data	is	loaded	in	the	target	table	(Table	12.18).

Table	12.18

Data	Mapping	for	the	Reference	Data	Scenario

Target	Table Target	Column

COUNTRY



COUNTRY Country	Key

COUNTRY Country	Code

COUNTRY Country	Name

COUNTRY Country	Description

COUNTRY Country	Valid	Flag

COUNTRY

Clean	data	based	on	column	level	rule.

If	this	country	code	is	not	found	in	target	then	insert	a	new	row	by	giving	a	new	key.

Do	not	update	any	row	in	target	form	this	source

COUNTRY Country	Key

COUNTRY Country	Code

Remove	any	other	numeric	or	characters	from	data	like,	_	“etc.”

COUNTRY Country	Name

COUNTRY Country	Description

COUNTRY Country	Valid	Flag
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One	good	practice	while	loading	data	into	reference	and	surrogate,	key,	or
helping	tables	is	to	insert	a	row	with:

Key	value=−1

Code/Name/Description=UNKNOWN

During	data	loading,	when	the	source	table	is	joined	with	the	above	tables,	nulls
can	be	coalesced	with	“unknown.”	Doing	this	will	yield	two	benefits:

1.	Replacing	nulls	will	improve	join	performance.

2.	Key	value	of	−1	in	the	EDW	will	help	the	access	layer	identify	which	values
were	missing	in	the	source	data.



Business	Key,	Surrogate,	or	Helping	Table	with
Multiple	Unique	IDs	for	the	Same	Logical	Concept

Normally,	if	we	have	two	unique	identifications	for	the	same	logical	concept,	we
can	store	the	primary	ID	in	the	main	table	(e.g.,	PARTY)	and	its	other	unique
value	in	the	identification	table	(e.g.,	PARTY	IDENTIFICATION).

However,	there	would	be	cases	when	a	logical	concept	may	have	two	unique
identifications.	Different	source	systems	might	use	either	one	of	them.	In	such	a
case,	there	will	be	at	least	one	source	that	may	provide	a	relationship	between
the	two	unique	identifications.

Source

Let’s	take	the	example	of	telecom	client.	Let’s	assume	that	there	are	two	unique
values	for	every	product	that	a	user	can	subscribe	to.	For	example,	a	package	of
“100	free	minutes”	has	a	unique	ID	in	the	Session	Initiation	Protocol	(SIP)
system	as	well	as	in	the	IN	system.	At	the	same	time,	the	data	warehouse
receives	a	daily	dump	that	signifies	a	relationship	between	the	SIP	and	IN	codes.

Target

Toward	the	target	end	of	this	data,	we	have	a	surrogate	table	that	maintains	the
relationship	between	both	codes.	Whereas	Prod_Subscription	will	store	data	of
subscriptions	by	users,	Call_Product	will	store	products	that	were	used	in	the



call	(e.g.,	“free	minutes,”	“main	balance	account,”	or	“product”)	(Figure	12.16).





Figure	12.16	Target	table	for	the	multiple-identification	surrogate	scenario.

Mapping

The	first	two	mappings	below	are	connected	to	loading	data	in	the	S_PROD
table,	where	we	are	storing	the	relationship	between	both	codes.

Mapping	1

As	seen	in	Table	12.19,	we	are	inserting	a	complete	relationship	from	the	daily
dump	and	only	the	PROD_CD_1	from	the	secondary	source.	We	will	be	using
PROD_CD_1	to	generate	keys	and	treat	PROD_CD_2	as	secondary/non-pk
column.	We	don’t	have	any	third	source.	The	daily	dump	will	insert	and	update
data,	but	PROD_SUBSCRIPTION	will	only	insert	rows	(Table	12.19).

Table	12.19

Data	Mapping	for	the	Multiple-Identification	Surrogate	Scenario	1



Target	Table Target	Column

S_PROD

If	a	row	is	found	in	target	with	Prod_Source	<>	1	then	update	that	row	from	this	mapping

S_PROD Prod_Key

S_PROD Prod_Cd_1

S_PROD Prod_Cd_2

S_PROD Prod_Source

S_PROD

Insert	only,	do	not	update	any	row	from	this	source

S_PROD Prod_Key

S_PROD Prod_Cd_1

S_PROD Prod_Cd_2

S_PROD Prod_Source
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Mapping	2

Here	we	have	a	mapping	for	product	subscriptions	where	the	subscription	data	of
these	products	is	loaded.	This	is	the	source	that	is	providing	the	main	SIP_Id
without	any	issues	so	far	(Table	12.20).

Table	12.20

Data	Mapping	for	the	Multiple-Identification	Surrogate	Scenario	2

Target	Table Target	Column Record	Id Source	Table

PROD_SUB IN001 Prod_Subscription

ON	PS.prodid=SP.Prod_Cd_1

PROD_SUB Prod_Key IN001 S_PROD	SP



PROD_SUB Subscriber_Id IN001 Prod_Subscription

PROD_SUB Subscription_Time IN001 Prod_Subscription

PROD_SUB Subscription_Amount IN001 Prod_Subscription
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Mapping	3

Here	we	are	getting	the	IN	product	ID,	which	is	the	secondary	ID	in	our
surrogate	or	helping	table.	We	cannot	generate	a	new	ID	for	the	IN	product	ID
because	there	is	a	chance	that	the	same	product	might	end	up	having	two	keys	in
this	table:	one	for	the	SIP	code	and	the	other	for	the	IN	code.

We	will	create	an	orphan	table	that	will	be	used	to	keep	data	whenever	the
product	ID	is	missing	in	the	surrogate	table	so	that	data	is	populated	from	this
temporary	table	back	into	the	main	table	(Figure	12.17).





Figure	12.17	Target	table	for	the	multiple-identification	surrogate	scenario
with	orphan	table.

Mapping

There	are	three	mappings;	the	main	mapping	does	the	transformation	based	on
rules.	Two	other	mappings	will	handle	the	product	code	issue	(Table	12.21).

Table	12.21

Data	Mapping	for	the	Multiple-Identification	Surrogate	Scenario	with
Orphan	Table

Target	Table Target	Column

Call

Call

Call

Call_Product



ON	coalesce	(PS.prodid,‘UNKNOWN’)=SP.Prod_Cd_2.

Insert	only	those	rows	which	have	either	a	valid	value	form	S_PROD	or	source	is	giving	NULLs

Call_Product

Call_Product

Call_Orphan

Call_Orphan

Call_Orphan
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The	first	mapping	will	run	daily	before	the	main	mapping	such	that	it	loads
orphan	records	within	“staging”	from	the	previous	run.	When	the	first	mapping
is	executed,	the	main	mapping	will	be	executed,	and	afterward,	the	last	mapping
will	load	orphan	records	to	the	CALL	ORPHAN	table.



Denormalized	or	Data	Mart	Table

A	denormalized	table	contains	violations	of	the	third	normal	form	(3NF)	and	is
usually	created	during	physical	data	modeling.	Such	a	type	of	tables	provides
better	performance	and	reduces	the	number	of	additional	joins	considerably.

This	is	also	true	in	the	case	of	data	marts.	Sometimes	we	load	data	directly	from
“staging”	into	the	“data	mart,”	the	latter	of	which	is	mostly	denormalized.

Source

The	source	for	this	scenario	is	warranty	claims.	Consider	warranty	claims	that
have	multiple	attributes	of	claim	themselves	plus	attributes	coming	from	the
device	that	is	being	repaired.

Target

In	the	3NF	model,	attributes	that	are	related	to	a	device	will	be	loaded	in	the
DEVICE	table,	and	attributes	that	are	related	to	the	claim	itself	will	be	loaded	in
the	CLAIM	table.	The	reason	for	this	step	is	that	multiple	repair	attempts	on	the
same	device	may	create	redundancy	in	the	main	table	(Figure	12.18).





Figure	12.18	Target	table	for	the	denormalized	data	scenario.

Mapping

See	Table	12.22.

Table	12.22

Data	Mapping	for	the	Denormalized	Data	Scenario

Target	Table Target	Column Record	Id Source	Table

CLAIM CLA001 Warranty_Event

Repair_Event Warranty_event	WE

Manuf_Det left	join	Repair_Event	RE

ON	WE.Warranty_Cd=RE.Warranty_Cd

LEFT	JOIN	Manuf_Det	MD



ON	WE.	Mobile_IMEI=MD.IMEI

CLAIM Claim	Id CLA001 Warranty_Event

CLAIM Repair	Id CLA001 Repair_Event

CLAIM Claim	Date CLA001 Warranty_Event

CLAIM Claim	Latest	Status CLA001 Warranty_Event

CLAIM Claim	Type CLA001 CONSTANT

CLAIM Claim	Location CLA001 Warranty_Event

CLAIM Repair	Dt CLA001 Repair_Event

CLAIM Repair	Status CLA001 Repair_Event

CLAIM Repair	Component	Cd CLA001 Repair_Event

CLAIM Device	Id CLA001 Warranty_Event

CLAIM Device	Component	Cd CLA001 Manuf_Det

CLAIM Device	Group CLA001 Manuf_Det

CLAIM Device	Manufacturing	Location CLA001 Manuf_Det

CLAIM Device	Manufacturing	Date CLA001 Manuf_Det

CLAIM Device	Class	Cd CLA001 Manuf_Det
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Access,	Semantic,	or	Presentation	Layer	Attributes
Mapping

Consider	a	scenario	in	which	starting	from	the	loading	of	data	from	the	source
until	the	actual	generation	of	business	reports	takes	a	long	time,	and	the	solution
architect	would	like	to	reduce	the	execution	time.	There	may	be	some	solutions
that	could	be	implemented	in	the	source	matrix	(SMX)	to	reduce	the	execution
time	pertaining	to	the	semantic	or	access	layer.	Because	SMX	rules	are	usually
executed	on	delta	loads,	the	rules	run	faster	when	applied	on	smaller	datasets.

Source

Let’s	take	the	example	of	a	warranty	claim	when	a	cell	phone	is	brought	to	a
repair	shop.	There	is	a	business	requirement	to	find	out	the	first	date	on	which
the	phone	was	brought	to	the	shop	for	repair.	There	can	be	multiple	repairs	on
the	same	device.

Target

The	target	table	in	this	case	is	the	same	(i.e.,	CLAIM	with	an	additional	column
of	Claim_First_Repair_Flag)	(Figure	12.19).





Figure	12.19	Target	table	for	the	semantic	layer	scenario.

Mapping

See	Table	12.23.	In	the	above	mapping,	we	will	track	a	device’s	first	claim	by
checking	its	dates	during	the	loading	process.	Because	the	daily	delta	load	is
much	smaller	than	the	historical	data,	it	will	be	easier	to	set	the	flag	during	the
transformation	process	rather	than	doing	it	in	the	access	layer.

Table	12.23

Data	Mapping	for	the	Semantic	Layer	Scenario

Target	Table Target	Column

CLAIM

Repair_Event Warranty_event	WE

Manuf_Det left	join	Repair_Event	RE

ON	WE.Warranty_Cd=RE.Warranty_Cd



LEFT	JOIN	Manuf_Det	MD

ON	WE.	Mobile_IMEI=MD.IMEI

LEFT	JOIN	EDW.CLAIM	C

ON	WE.Mobile_IMEI=C.Device_Id

CLAIM Claim	Id

CLAIM Repair	Id

CLAIM Claim_First_Repair_Flag

			WHEN	C.DEVICE_ID	IS	NULL

				THEN	1

			WHEN	WE.Date_Submitted	<	C.Claim_Date

				THEN	1

			ELSE	0

END

Update	Previous	CLAIM	by	flag=0	if	source	provided	claim’s	date	is	less	than	EDW	claim.

CLAIM Claim	Date

CLAIM Claim	Latest	Status

CLAIM Claim	Type

CLAIM Claim	Location



CLAIM Repair	Dt

CLAIM Repair	Status

CLAIM Repair	Component	Cd

CLAIM Device	Id

CLAIM Device	Component	Cd

CLAIM Device	Group

CLAIM Device	Manufacturing	Location

CLAIM Device	Manufacturing	Date

CLAIM Device	Class	Cd
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An	extra	join	with	the	target	table	is	required	to	extract	old	claims	for	the	same
device.	After	applying	the	join,	the	flag	is	set	for	new	and	old	claims.



Dimensions	Mapping

Most	of	the	smaller	companies	prefer	data	marts	because	of	their	framework
based	on	the	star	schema	or	something	similar.	In	such	cases,	dimensions	are
built	separately	to	provide	a	way	to	look	at	various	facts.

Source

Take	the	example	of	the	country	dimension	in	which	we	have	multiple	source
tables	that	are	combined	to	build	a	single	dimension	table.

Target

See	Figure	12.20.





Figure	12.20	Target	table	for	the	dimension	scenario.

Mapping

In	most	cases,	dimensional	data	will	not	maintain	history	(i.e.,	any	change
coming	from	the	source	will	override	the	old	value)	(Table	12.24).	But	if	there	is
a	need	to	track	all	changes	from	the	country,	we	can	change	this	mapping	to
SCD	logic.	In	such	cases,	the	usage	of	this	dimension	will	be	different.

Table	12.24

Data	Mapping	for	the	Dimension	Scenario

Target	Table Target	Column Record	Id Source	Table Source	Column

COUNTRY DIM001 Country

Cntry_Cont

Cntry_GDP

Cntry_Pow



COUNTRY Country_Cd DIM001 Country Cntry_Cd

COUNTRY Country_Name DIM001 Country Cntry_Name

COUNTRY Country_Continent DIM001 Cntry_Cont Cntry_Continent

COUNTRY Country_Region DIM001 Country Region

COUNTRY Country_GDP_Class DIM001 Cntry_GDP GDP_Class

COUNTRY Country_Poverty_Index DIM001 Cntry_Pow Poverty_Index
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For	tracking	history,	we	added	start	and	end	date	columns	in	the	COUNTRY
table	and	can	now	track	history	of	any	change	in	nonpk	columns.	Now	when	we
join	a	fact	with	this	dimension,	we	need	to	provide	a	date	to	find	the	correct	time
window.

SELECT	*

FROM	fact	f

INNER	JOIN	Country	d

ON	f.country_id	=	d.County_Id

WHERE	f.fact_date	BETWEEN	d.Effective_Start_Date	AND
d.Effective_End_Date



Apply	Logic	versus	Transformation	Logic

When	we	transform	data	from	the	source	to	the	target,	two	steps	are	involved.

1.	Data	transformation	from	the	source

2.	Data	application	to	the	target	(Figure	12.21)





Figure	12.21	Data	flow	from	the	staging	table	to	the	target	table.

In	most	cases,	the	data	mapper	can	write	rules	about	data	transformation	for
every	mapping	and	provide	a	single	data	application	rule	for	the	whole	project.
For	example,	a	generic	data	application	rule	can	be	“Update	old	data	and	insert
new	rows	based	on	the	primary	key	of	the	table.”

Based	on	the	project’s	requirements,	the	above	rule	can	be	modified	as	required.
However,	there	are	special	cases	when	the	data	mapper	should	define	separate
rules	for	both	steps.	They	can	be	in	single	mapping	with	complete	details	or
description	provided	in	the	header.

Usually	a	special	apply	rule	is	needed	in	the	below	cases:

1.	Mapping	aggregate	data

2.	Special	update	logic	is	required

3.	Special	data	quality	rules

4.	Performance	issues



Dividing	the	Dataset	Into	Smaller	Chunks

We	discussed	a	performance	improvement	mapping	at	the	start	of	this	chapter	in
which	we	divided	a	single	mapping	into	two	mappings.	Another	approach	to
improving	performance	could	be	to	divide	source	data	into	smaller	chunks.

Source

In	this	case,	let’s	take	an	example	of	financial	data;	our	source	table	is
accounts_transaction	containing	a	bank’s	daily	ledger	transactions.	The	source
contains	account	number,	time	of	transaction,	type	of	transaction,	amount,	and
other	columns	related	to	bank	account	transactions.

Target

See	Figure	12.22.





Figure	12.22	Target	table	for	the	source-data	division	into	smaller	datasets.

Mapping

When	thinking	of	dividing	a	large	dataset	to	smaller	ones,	many	techniques	and
methods	may	be	used.	We	can	divide	based	on	date	and	time,	or	we	can	divide
based	on	type	columns.	Whatever	division	technique	we	use,	the	resulting
datasets	should	be	equally	sized	to	get	the	benefits	of	performance	improvement.

Apart	from	equal-sized	datasets,	we	should	also	ensure	the	mapping’s	logic	is
not	impacted,	especially	when	mapping	contains	aggregate	functions.	For	such
cases,	use	the	partitioning	column	to	divide	source	data	into	smaller	chunks.

Here	we	will	use	a	technique	that	is	useful	for	worst-case	scenarios	for	better
understanding	of	the	concept.	We	will	use	an	account	number	for	dividing	the
source	data.	After	we	have	done	our	column-level	analysis,	we	can	confirm	the
below	parameters:

Data	type:	Alphanumeric

Null	count:	0

Max	length:	11

Min	length:	7

Total	count:	127,000,000

Distinct	acct_No:	49,000,000

Average	rows	per	val:	2.17



The	above	statistics	are	very	important	to	understand	each	column’s	content;	we
have	enough	information	to	decide	when	making	the	division.	The	minimum
length	of	the	column	is	6,	and	there	are	no	nulls	in	this	column;	this	means	that	if
we	use	any	of	the	first	6	characters	for	the	formula,	we	won’t	face	any	problems.
Let’s	take	the	third	character	of	the	column	for	this	example.	Before	we	create
mappings,	we	need	to	verify	the	division	of	the	target	dataset.	Run	the	below
query	to	see	the	size	of	resulting	datasets.

SELECT	SUBSTRING(Account_Number,3,1)	as	Val,	COUNT(*)	as
Row_Count

FROM	ACCOUNT_TRANSACTIONS

GROUP	BY	SUBSTRING(Account_Number,3,1)

Table	12.25	shows	the	resulting	dataset	for	the	above	query.	The	above	data	is
fairly	even,	giving	almost	equal	datasets.	But	looking	at	the	values,	we	can
notice	only	12	characters	from	both	alphabets	and	numbers.	Does	this	mean	that
there	can	be	other	characters	in	the	future?

Table	12.25

Datasets	Based	on	the	Third	Alphabet	of	Column	Value



Val Row_Count

a 21166666

b 10583333

c 20583333

d 40583333

y 10583333

z 583333

1 10583337

2 30583333

3 83333

4 10583333

5 10583333

6 10583333



When	creating	a	mapping,	we	need	to	cover	all	possible	future	scenarios;	we	can
do	this	by	requesting	the	client	to	provide	detailed	information	about	account
number	creation	logic.	Second,	we	should	always	create	an	extra	group	for
“other”	values	to	accommodate	data	that	might	come	in	the	future	(Table	12.26).

Table	12.26

Data	Mapping	for	Source-Data	Division	Into	Smaller	Datasets

Target	Table Target	Column

TRN

WHERE	SUBSTRING(account,3,1)	=‘a’

TRN

TRN

TRN

TRN

WHERE	SUBSTRING(account,3,1)	=‘b’



TRN

TRN

TRN

TRN

WHERE	SUBSTRING(account,3,1)	=‘c’

TRN

TRN

TRN

TRN

WHERE	SUBSTRING(account,3,1)	=‘d’

TRN

TRN

TRN

TRN

WHERE	SUBSTRING(account,3,1)	=‘y’

TRN

TRN

TRN



TRN

WHERE	SUBSTRING(account,3,1)	=‘z’

TRN

TRN

TRN

TRN

WHERE	SUBSTRING(account,3,1)	=“1”

TRN

TRN

TRN

TRN

WHERE	SUBSTRING(account,3,1)	=“2”

TRN

TRN

TRN

TRN

WHERE	SUBSTRING(account,3,1)	=“3”

TRN

TRN



TRN

TRN

WHERE	SUBSTRING(account,3,1)	=‘4’

TRN

TRN

TRN

TRN

WHERE	SUBSTRING(account,3,1)	=‘5’

TRN

TRN

TRN

TRN

WHERE	SUBSTRING(account,3,1)	=‘6’

TRN

TRN

TRN

TRN

WHERE	SUBSTRING(account,3,1)	not	in	(“a”,”b”,”c”,”d”,”y”,”z”,”0”,”1”,”2”,”3”,”4”,”5”,”6”)



TRN

TRN

TRN



*TRN	CAT,	Transformation	Category.



Unstructured	Data

Data	warehousing	normally	deals	with	structured	data	in	the	form	of	relational
databases,	but	there	can	be	special	cases	in	which	we	come	across	unstructured
data.	There	is	a	separate	field	of	big	data	that	deals	with	unstructured	data;	the
techniques	deal	specifically	with	data	in	an	unstructured	format.

Even	though	data	comes	in	an	unstructured	format,	there	is	always	some	level	of
connection	in	this	data.	We	can	exploit	this	connection	and	convert	the	source
data	into	table	form.

Source

In	the	below	example,	we	will	discuss	one	such	scenario	where	the	source	is
sending	random	rows	in	a	file.	However,	there	is	a	sequence	in	receiving	rows,
and	it	is	always	followed.	Below	is	the	file	format:

•	User’s	data:	7	values	separated	by	“|”

•	Header	data:	21	values	separated	by	“,”

•	Form	filling	success	flag:	2	values	separated	by	“;”

•	Form’s	fields	data:	6	values	separated	by	“$”

The	last	row	in	the	above	sequence	can	be	repeated	multiple	times	with	a	limit	of
five	times.	This	presents	a	major	challenge	for	the	data	mapper—how	to	convert
this	sequence	into	row	format.	For	one,	if	the	row	starts	with	an	identifier,	then
we	can	join	both	datasets	together	using	this	identifier.



Target

For	this	example,	we	only	convert	the	source	data	into	tabular	form.

Mapping

Because	we	know	that	the	delimiter	in	each	case	is	different,	we	can	use	a
combination	of	the	SUBSTRING	and	INDEX	function	to	count	occurrences	of
this	delimiter.	If	the	count	and	delimiter	match	the	above	explanation,	then	we
can	add	another	column	in	the	table	to	mark	the	type	of	row.

Load	this	data	into	a	table	and	add	a	row	number	column	giving	the	data’s
sequence	in	the	file.	This	will	result	in	two	columns	of	the	table:	one	will	be	row
number,	and	the	other	will	hold	actual	data	(Table	12.27).

Table	12.27

Data	Mapping	for	the	Unstructured	Data	Scenario	1

Target	Table Target	Column Source	Table Source	Column TRN	CAT*

FormData_2 FormData_1 +



FormData_2 Row# FormData_1 Row# Direct

FormData_2 Data FormData_1 Data Direct

FormData_2 Type FormData_1 Transf

If	delimiter=“|”	and	count	>=7

			then	“U”

If	delimiter=“,”	and	count	>=21

			then	“H”

If	delimiter=“;”	and	count	>=2

			then	“F”

If	delimiter=“$”	and	count	>=6

			then	“T”



*TRN	CAT,	Transformation	Category.

Next	we	can	convert	source	data	into	a	single	format	by	using	a	single	delimiter
for	all	types	of	rows;	this	will	help	later	on	in	separating	one	column	into
multiple	columns	(Table	12.28).

Table	12.28

Data	Mapping	for	the	Unstructured	Data	Scenario	2

Target	Table Target	Column Source	Table Source	Column TRN	CAT* Transformation	Rule

FormData_3 FormData_2 +

FormData_3 Row# FormData_2 Row# Direct

FormData_3 Data FormData_2 Data Trans Change	delimiter	to	“|”	for	all	data

FormData_3 Type FormData_2 Type Direct



*TRN	CAT,	Transformation	Category.

The	last	thing	we	need	to	do	is	to	convert	all	types	of	rows	into	a	single	row	and
column	format.	For	this,	we	will	use	self-joins	multiple	times.	We	have	a
sequence	number	of	row	in	the	file	and	type	of	row;	by	using	these	two,	we	can
transpose	the	data	based	on	our	requirements.

SELECT	U.data	+’|’+	H.data	+’|’+	F.data	+’|’+	T1.data

	FROM

		FormData_3	U

	JOIN	FormData_3	H

	ON	U.row#+1	=	H.row#

AND	H.Type=’H’

JOIN	FormData_3	F

	ON	U.row#+2	=	F.row#

AND	F.Type=’F’

JOIN	FormData_3	T1

ON

(

		U.row#+3	=	T1.row#

OR	U.row#+4	=	T1.row#



OR	U.row#+5	=	T1.row#

OR	U.row#+6	=	T1.row#

OR	U.row#+7	=	T1.row#

)

AND	T1.Type=’T’

WHERE	U.type	=	‘U’

The	above	transformation	will	return	one	column	containing	the	data	of	the
whole	row	but	in	the	same	format.	Now	we	can	convert	this	single	column	to
multiple	columns	by	using	a	delimiter.



Data	Transpose

Transpose	in	data	warehousing	is	defined	as	converting	a	table’s	columns	to
rows	or	rows	to	columns.	This	kind	of	transformation	is	usually	done	to	either
normalize	source	data	or	to	denormalize.

Source

Because	we	will	explain	both	types	of	transposes,	the	below	source	will	also	act
as	the	target.	Consider	a	source	that	stores	names	in	column	format	(Figure
12.23).





Figure	12.23	Source	data	for	the	data	transpose	scenario.

Target

Our	target	table	contains	the	Name_Type	column,	which	distinguishes	among
different	names	(Figure	12.24).





Figure	12.24	Target	table	for	the	data	transpose	scenario.

Mapping

Transpose:	Converting	Columns	to	Rows

For	converting	columns	into	rows,	we	can	simply	use	the	UNION	function	to
merge	each	column’s	data	one	by	one.	We	can	also	implement	column-level
rules	if	required,	although	this	is	a	straightforward	data	union.

SELECT	A.Person_id,	‘First	Name’	as	Name_Type,	COALESCE
(First_Name,’Not	Available	in	Source’)	as	Name_Value

FROM	PERSON_COLUMN

UNION	ALL

SELECT	A.Person_id,	‘Middle	Name’	as	Name_Type,	COALESCE
(Middle_Name,’Not	Available	in	Source’)	as	Name_Value

FROM	PERSON_COLUMN

UNION	ALL

SELECT	A.Person_id,	‘Last	Name’	as	Name_Type,	COALESCE
(Last_Name,’Not	Available	in	Source’)	as	Name_Value

FROM	PERSON_COLUMN



UNION	ALL

SELECT	A.Person_id,	‘Nick	Name’	as	Name_Type,	COALESCE
(Nick_Name,’Not	Available	in	Source’)	as	Name_Value

FROM	PERSON_COLUMN

We	are	using	UNION	ALL	because	we	are	100%	sure	that	all	four	datasets	are
mutually	exclusive	and	will	not	result	in	a	duplicate	value	by	using	a	hard-coded
value	for	the	NAME_TYPE	column	and	give	a	unique	value	to	each	dataset.	If
there	was	a	possibility	of	a	full-row	duplicate,	we	would	have	used	the	UNION
function	instead	of	UNION	ALL.

Transpose:	Converting	Rows	to	Columns

For	converting	rows	into	columns,	we	will	use	self-join	on	the	primary	key	and
select	one	column	from	each	joining	dataset.	We	will	use	a	full	outer	join	to
make	sure	that	we	don’t	lose	any	data	because	of	a	missing	name.





Interestingly,	the	number	of	columns	in	the	target	case	is	limited;	hence,	this
kind	of	self-join	works	fine,	and	we	don’t	have	to	work	with	recursive	queries	in
this	case.



Aggregate	Functions	and	Loading	Cycle

Aggregate	functions	can	be	used	in	mappings	and	require	careful	analysis	of
grouping	and	portioning	columns	to	ensure	that	the	resulting	aggregated	value	is
correct.	The	result	can	be	wrong	if	data	is	distributed	in	multiple	extracts	and
processes	separately.

Some	aggregate	functions	are	easier	to	load	than	others.	For	example,	the	SUM
function	can	be	used	without	special	rules;	the	data	mapper	can	add	the	SUMed
value	of	the	current	extract	into	the	target	table’s	old	value.	However,	some
functions	such	as	AVERAGE	can	give	wrong	results	if	we	don’t	handle	the	logic
in	transformation.

For	functions	such	as	AVERAGE,	if	all	data	is	processed	in	one	cycle,	then	the
aggregated	value	will	be	correct.	But	if	we	are	taking	the	average	of	the	data
from	two	different	days,	then	the	result	will	be	wrong	if	we	don’t	apply	special
logic.

Source

In	this	scenario,	we	will	take	some	retail	store	data	as	the	source.	In	the	source
data,	we	have	daily	transactions	of	a	retail	store’s	different	branches,	giving
information	about	time,	product,	price,	and	so	on.

Because	of	the	large	amount	of	data,	the	data	warehouse	will	process	the	source
data	once	every	hour.	This	means	that	the	same	date’s	data	will	be	processed	24
times	in	a	single	day.



Target

In	the	target,	we	are	storing	sales	of	the	store	in	aggregated	form	(Figure	12.25).





Figure	12.25	Target	table	for	the	complex	aggregation	scenario.

Apart	from	the	first	two	columns,	all	other	columns	in	the	target	require
aggregate	functions.	We	will	load	data	from	this	source	once	every	hour,
resulting	in	the	same	date’s	data	being	processed	in	different	batches.	If	we	don’t
apply	a	special	rule	here,	the	old	value	will	be	replaced	by	the	new	value,	giving
the	wrong	results.	Instead,	we	should	store	all	values	that	are	calculated	for	all
rows	of	a	particular	store	on	a	particular	date.

Mapping

Below	are	different	options	to	handle	such	situations.

Store	Raw	Data	Separately

One	way	to	get	correct	results	in	the	aggregated	function	is	to	use	a	temporary
table	before	loading	complete	data	in	the	final	table.	The	idea	here	is	to	store	raw
source	data	in	its	original	form	in	a	temporary	table	and	then	use	the	aggregate
function	on	top	of	this	table,	loading	the	resultset	in	the	final	table.

The	benefit	of	having	this	extra	table	is	that	our	results	will	be	correct.	However,
it	also	requires	overhead	for	managing	and	storing	data.

The	performance	of	the	system	can	be	improved	by	regularly	removing	old	data
that	is	not	of	interest.	For	example,	we	can	backdate	data	to	a	maximum	of	5
days;	this	means	that	all	data	before	the	past	5	days	will	be	deleted	from	the
temporary	table.	This	will	save	disk	space	and	speed	up	performance.



Performance	can	be	further	improved	by	having	the	same	index	of	the	temporary
and	final	table	and	by	partitioning	the	temporary	table.	With	partitions	defined,
we	will	join	new	extract	data	with	the	temporary	table	and	process	only	the
required	data.

Step	1:	Insert	new	data	from	the	source	to	the	temporary	table.

Step	2:	Calculate	the	aggregates	and	insert	data	into	the	final	table.	To	reduce	the
amount	of	data	that	is	being	processed,	we	will	add	a	filter	condition.

SELECT	store_id,	sale_Date,sum(amount)/count(*)

FROM	TEMP

WHERE	(store_id,	sale_Date)	IN

(

	SELECT	store_id,sale_date

	FROM	Sales_Source

	GROUP	BY	store_id,sale_date

)

Store	Row	Count	with	Aggregated	Column

The	second	option	is	to	store	all	parameters	required	for	special	aggregate
function	in	the	target	table.	For	example,	in	the	case	of	average,	we	need	the
SUM	of	the	amount	and	the	total	COUNT	of	rows,	and	then	we	will	divide	SUM
with	COUNT	to	get	the	average.



In	this	solution,	we	will	store	all	values	in	the	target	table	along	with	the	average
value	for	a	correct	result.	Consider	the	state	of	the	target	table	before	it	is	loaded
(Table	12.29).

Table	12.29

Target	Table	Snapshot	Before	Loading

Store_Id Date Average_Sale Sale_Amount Sale_Count

123 1/13/2016 759 5420089 7138



From	new	source	data,	we	have	the	result	shown	in	Table	12.30	after
transformation	but	before	apply.	To	update	the	target	table	with	correct	stats,	we
can	use	the	following	query.





Table	12.30

Temporary	Table	Stats	Before	Apply

Store_Id Date Average_Sale Sale_Amount Sale_Count

123 1/13/2016 1469 82250 56



Having	additional	columns	to	keep	all	required	parameters	of	data	is	mandatory
to	ensure	the	correct	figure	is	provided	to	business	users.



Initial	Load	versus	Delta	Load

We	write	transformation	rules	for	regular	data	extracts	from	the	source	in	the
data	mapping	document;	this	loading	cycle	is	commonly	referred	to	as	delta
loading.	When	the	data	warehouse	goes	to	production,	we	load	the	history	data
from	the	source;	this	is	called	the	initial	or	full	load.

The	transformation	logic	of	the	history	data	is	usually	the	same	unless	the	source
contains	multiple	releases’	data.	In	the	real	world,	almost	every	online
transaction	processing	(OLTP)	or	operational	source	is	modified	to	add	new
features	or	to	fix	bugs.

Such	changes	in	sources	result	in	data	quality	or	logic	issues.	When	doing	the
initial	load	from	the	source	system,	the	data	mapper	needs	to	define	special	rules
for	such	issues.

Apart	from	changes	in	the	source	system,	clients	also	have	legacy	sources’	data.
These	systems	were	replaced	by	new	and	better	solutions	by	the	client,	and	the
data	warehouse	has	to	load	data	from	all	sources.

Transformation	rules	for	the	initial	load	should	also	be	documented	in	the	data
mapping	document.	We	can	add	an	extra	marker	column	that	gives	information
whether	this	mapping	is	for	the	initial	load	or	the	delta	load.



Recursive	Query

The	sources	of	a	data	warehouse	are	usually	in	tabular	form,	but	there	can	be
cases	when	the	data	value	inside	a	column	contains	multiple	values	without	a
defined	limit.	When	there	is	a	business	requirement	to	convert	this	type	of	data
into	row	form,	we	have	to	rely	on	recursive	logic.

Source

The	source	in	this	scenario	is	sales	order	data,	which	gives	information	about
order	ID,	order	date,	item	ordered,	and	item	price	(Table	12.31).	The	problem	is
that	product	ID	and	the	price	are	given	in	a	single	column.	There	are	two	levels
of	delimiters	in	this	column:	the	first	delimiter	is	“:”	separating	items	ordered,
and	the	second	delimiter	“,”	separates	item	ID	from	its	price	(Figure	12.26).

Table	12.31

Source	Data	for	the	Recursive	Query	Scenario

Order_Id Order_Date Order_Detail



545 12/17/2015 69127,25.3:35415,598.0:65897,58.9

528 12/16/2015 54544,89.0

559 12/21/2015 45545,9.0:54687,58.9:89654,87.0:40120,6.6:890014,20.2



Target





Figure	12.26	Target	table	for	the	recursive	query	scenario.

Mapping

The	mapping	shown	in	Table	12.32	explains	the	recursive	logic	for	the	target
table.

Table	12.32

Data	Mapping	for	the	Recursive	Query	Scenario

Target	Table Target	Column Source	Table Source	Column TRN	CAT* Transformation	Rule

Sales_Order Orders +

Sales_Order Order_Id Orders Order_Id Direct

Sales_Order Order_Date Orders Order_Date Direct

Sales_Order Item_Id Orders Order_Detail Transformation

Sales_Order Item_Price Orders Order_Detail Transformation





*TRN	CAT,	Transformation	Category.

Apart	from	separating	values	inside	a	column,	recursive	logic	is	also	required	if
we	are	creating	rows	based	on	a	range.	For	example,	if	we	have	a	range	of	cell
phone	vouchers	from	100	to	1000	and	the	business	requires	one	row	for	each
voucher,	then	we	have	to	use	a	recursive	query.

SQL	language	is	not	meant	for	object-oriented	programming	logic,	and	recursive
queries	create	major	performance	issues.	A	data	mapper	should	use	SQL
language	only	if	the	number	of	iterations	(depth	of	data	in	a	column)	is	small
relative	to	the	database	engine.

If	the	depth	of	data	is	very	big	and	causes	system	performance	issues,	then	it	is
recommended	to	implement	recursive	logic	outside	of	the	database	and	then	load
the	resultset	into	the	table.

Below	is	a	sample	code	for	recursive	queries	from	Microsoft	SQL	(MSSQL).

CREATE	TABLE	Recursive_Table

(

	Primary_Key_Of_Table	INT,

	string	CHAR(991)

);

INSERT	VALUES	Recursive_Table	VALUES	(1,‘a,b,c,d,e’);

INSERT	VALUES	Recursive_Table	VALUES	(2,‘a,bb,ccc,dddd,eeeee’);

WITH	RECURSIVE	Temporary_Recursive_Table



(Primary_Key_Of_Table,

	Length,

	Remaining_String,

	word,

	Position

	)	AS	(

	SELECT

		Primary_Key_Of_Table,

		Find_Position(‘,’	IN	String	||	‘,’)	-	1	AS	Length,

		Sub_string(String	||	‘,’	FROM	Length	+2)	AS	Remaining_String,

		Sub_string(String	FROM	1	FOR	Length)	AS	word,

			1

	FROM	Recursive_Table

	UNION	ALL

	SELECT

		Primary_Key_Of_Table,

		PositionITION(','	IN	Remaining_String)-	1	AS	Length_new,

		Sub_string(Remaining_String	FROM	Length_new	+2),

		Sub_string(Remaining_String	FROM	1	FOR	Length_new),

		Position	+1

	FROM	Temporary_Recursive_Table



	WHERE	Remaining_String	<>	“

)

SELECT

	Primary_Key_Of_Table,	Position,	word

FROM	Temporary_Recursive_Table

Ordering_By_Column	Primary_Key_Of_Table,	Position;



Loading	Sequence	of	Mapping

The	data	warehouse	extracts	data	from	the	source	and	gives	final	reports	to
business	users.	In	between	these	two	steps	lies	a	complex	data	flow	logic	that
moves	data	from	one	point	to	another,	transforming	it	each	time	to	bring	it	close
to	the	final	report.

This	transformation	of	individual	datasets	can	be	done	in	parallel	to	speed	up	the
loading	process,	but	sometimes	we	come	across	cases	in	which	dependency
between	datasets	can	create	wrong	results.	For	these	data	mappings,	we	define
the	sequence	in	which	data	will	be	transformed	and	give	each	mapping	a	unique
sequence	number.

This	kind	of	dependency	can	be	between	source	systems	or	between	mappings	of
the	same	source	system.	The	complexity	of	sequencing	can	vary	based	on	the
client’s	business	model.

If	there	is	dependency	between	source	systems,	then	we	need	to	implement
sequencing	in	the	loading	schedule.	This	can	be	documented	in	the	data	mapping
document	in	a	separate	worksheet	that	gives	information	about	the	source	system
scheduling;	Table	12.33	is	one	example.

Table	12.33

Source	System	Wise	Loading	Priority	or	Sequence



Source	System Frequency Time Dependency Sequence

Source	1 Daily 2:00	AM N 0

Source	2 Daily 12:00	AM N 0

Source	3 Daily 12:00	AM Y SQ1.2

Source	4 Daily 2:00	AM Y SQ1.3

Source	5 Daily 11:00	PM Y SQ1.1

Source	6 Monthly 2:00	AM N 0

Source	7 Monthly 12:00	AM N 0

Source	8 Daily 12:00	AM Y SQ2.1

Source	9 Daily 12:00	AM Y SQ2.2

Source	10 Daily 2:00	AM N 0



For	dependency	within	the	source	system,	we	can	define	the	sequencing	at	the
mapping	level.

Source

Let’s	take	an	example	of	a	mobile	manufacturing	client.	The	client	has	a	unique
identification	system	called	DSN	for	its	devices	and	gives	every	device
manufactured	a	unique	ID.	There	is	also	an	international	standard	for	identifying
every	mobile	uniquely.	This	code	is	called	IMEI.

In	this	scenario,	we	have	two	sources.	The	first	one	gives	the	relationship
between	DSN	and	IMEI.	The	second	source	gives	data	about	warranty	claims,
which	provides	both	DSN	and	IMEI.	But	most	of	the	time,	DSN	is	either	null	or
contains	garbage	data.

In	EDW,	DSN	is	used	to	uniquely	identify	an	instance	of	a	cell	phone;	hence,	it
is	not	acceptable	to	have	nulls	or	garbage	data	in	this	column.	Ideally,	the	source
should	provide	us	with	this	information,	but	let’s	assume	that	this	cannot	be
done.

Target

See	Figure	12.27.





Figure	12.27	Target	table	for	the	loading	sequence	scenario.

Mapping

The	sequence	number	will	define	which	mapping	to	execute	first	and	which
afterward	(Table	12.34).	In	the	above	case,	we	want	the	ITEM	INSTANCE
IDENTIFICATION	table	loaded	first	followed	by	ITEM	INSTANCE	and
WARRANTY	CLAIM	last.

Table	12.34

Data	Mapping	for	the	Loading	Sequence	Scenario

Target	Table

ITEM	INSTANCE	IDENTIFICATION

ITEM	INSTANCE	IDENTIFICATION

ITEM	INSTANCE	IDENTIFICATION

ITEM	INSTANCE	IDENTIFICATION



ITEM	INSTANCE

Join	with	ITEM	INST	IDENTIFICATION	on	SOURCE.IMEI=Item	Instance	Identification	Number	and	Item	Instance	Identification	Type=1

If	a	row	is	found	then	ignore	this	row.

Else	Insert	a	row	only	if	DSN	column	length	is	greater	than	8	and	first	three	characters	are	alphabets.	Use	uppercase	and	trim.

ITEM	INSTANCE

IMEI

ITEM	INSTANCE

WARRANTY	CLAIM

CLAIM	a

Left	join

ITEM	INSTANCE	IDENTIFICATION	b

ON	a.IMEI=b.	Item	Instance	Identification	Number

AND	b.	Item	Instance	Identification=1

WARRANTY	CLAIM

WARRANTY	CLAIM

WARRANTY	CLAIM

			WHEN	B.Item	Instance	Id	IS	NOT	NULL

			THEN	B.Item	Instance	Id



			WHEN	length	(A.	DSN)	>8	AND	substr(A.DSN,1,3)	is	alphanumeric

			THEN	UPPER(TRIM(DSN))

			ELSE	“UNKNOWN”

END

WARRANTY	CLAIM



Glossary	and	Nomenclature	List

Attribute	Items	that	represent	a	single	type	of	information	in	a	dimension
(e.g.,	year	is	an	attribute	in	the	time	dimension)

BI	Business	intelligence

Data	mart	A	data	warehouse	with	a	more	limited	audience	or	data	content;
see	data	warehouse

Data	warehouse	A	subject-oriented,	integrated,	time-variant,	nonvolatile
collection	of	data	in	support	of	management’s	decision-making	process	(as
defined	Inmon,	2002)

Detail	transformation	document	(DTD)	Another	name	for	data	mapping
document.	This	document	contain	information	about	transformation	rules
of	mapping

Dimension	The	same	category	of	information	(e.g.,	year,	month,	day,	and
week	are	all	part	of	the	time	dimension)

Extract,	transform,	load	(ETL)	The	movement	of	data	from	one	area	to



another

Fact	table	A	type	of	table	in	the	dimensional	model.	A	fact	table	typically
includes	two	types	of	columns:	fact	columns	and	foreign	keys	to	the
dimensions.

Initial	load	The	first	population	of	the	production	database	installations
using	the	data	acquisition	modules	for	extraction,	transformation,	and
transportation

Logical	data	model	(LDM)	Data	model	of	data	warehouse	giving	logical
picture	of	entities	and	it’s	relationships

Measure	A	quantifiable	variable	or	value	stored	in	a	multidimensional
online	analytical	processing	(OLAP)	cube;	a	value	in	the	cell	at	the
intersection	of	two	or	more	dimensions

Metadata	Data	about	data	(e.g.,	the	number	of	tables	in	the	database	is	a
type	of	metadata)

Normalization	A	technique	used	to	eliminate	data	redundancy

Physical	data	model	(PDM)	Data	model	giving	physical	details	of	data
warehouse	tables



Primary	index	An	index	used	to	improve	performance	on	the	combination
of	columns	most	frequently	used	to	access	rows	in	a	table

Primary	key	A	set	of	one	or	more	columns	in	a	database	table	whose	values,
in	combination,	are	required	to	be	unique	within	the	table

Relationship	What	one	entity	has	to	do	with	another;	any	significant	way	in
which	two	things	of	the	same	or	different	type	may	be	associated

Row	An	entry	in	a	table	that	typically	corresponds	to	an	instance	of	some
real	thing,	consisting	of	a	set	of	values	for	all	mandatory	columns	and
relevant	optional	columns;	a	row	is	often	an	implementation	of	an	instance
of	an	entity

Source	matrix	(SMX)	Data	mapping	document

Snowflake	schema	A	common	form	of	dimensional	model;	different
hierarchies	in	a	dimension	can	be	extended	into	their	own	dimensional
tables.	Therefore,	a	dimension	can	have	more	than	a	single	dimension	table.

Star	schema	A	common	form	of	dimensional	model;	each	dimension	is
represented	by	a	single	dimension	table
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